1
|
Delmond KA, Delleon H, Goveia RM, Teixeira TM, Abreu DC, Mello-Andrade F, Reis AADS, Silva DDME, Barbosa ADP, Tavares RS, Anunciação CE, Silveira-Lacerda E. Influence of genetic polymorphisms in glutathione-S-transferases gene in response to imatinib among Brazilian patients with chronic myeloid leukemia. Mol Biol Rep 2021; 48:2035-2046. [PMID: 33709282 DOI: 10.1007/s11033-020-06093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022]
Abstract
Polymorphism in metabolizing enzymes can influence drug response as well as the risk for adverse drug reactions. Nevertheless, there are still few studies analyzing the consequence of polymorphisms for the Glutathione-S-transferases (GST) gene to drug response in chronic myeloid leukemia (CML). This study reports, the influence of GSTP1*B and GSTT1/GSTM1null polymorphisms in response to imatinib in CML patients in a Brazilian population. One hundred thirty-nine CML patients from the Clinical Hospital of Goiânia, Goiás, Brazil, treated with imatinib were enrolled in this study. Genotyping of GSTT1 and GSTM1 genes deletions were performed by qPCR and of GSTP1 gene was performed by RFLP-PCR. The frequency of GSTP1*1B, GSTT1 and GSTM1null polymorphisms were determined for all patients. The influence of each patient's genotypes was analyzed with the patient's response to imatinib treatment. Brazilian CML patients revealed GSTT1 and GSTM1 genes deletions. GSTT1 deletion was found in 19.3% of patients and GSTM1 deletion in 48.7% of patients with CML. GSTT1/GSTM1 deletion was found in 11.7% in Brazilian CML patients. The "G allele" of GSTP1*B, is associated with later cytogenetic response in imatinib therapy. While, the gene presence combined with GG genotype (GSTM1 present/GSTPI-GG) conferred a tend to a later cytogenetic response to patients. GSTP1*B and GSTT1/GSTM1null polymorphisms influence treatment response in CML. Brazilian CML patients presenting GSTP1 AA/AG genotypes alone and in combination with GSTT1 null reach the cytogenetic response faster, while patients presenting GSTP1-GG and GSTMI positive genotypes may take longer to achieve cytogenetic response. As a result, it allows a better prognosis, with the use of an alternative therapy, other than reducing treatment cost.
Collapse
Affiliation(s)
- Kezia Aguiar Delmond
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- College of Goyazes Union, Trindade, Goiás, 75380-000, Brazil
| | - Hugo Delleon
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- Uni-Anhanguera University Center of Goias, Goiânia, Goiás, 74423-115, Brazil
| | - Rebeca Mota Goveia
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Thallita Monteiro Teixeira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Davi Carvalho Abreu
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Angela Adamski da Silva Reis
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Daniela de Melo E Silva
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | | | | | - Carlos Eduardo Anunciação
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Elisângela Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
2
|
Meinert E, Alturkistani A, Osama T, Halioua-Haubold CL, Car J, Majeed A, Wells G, MacLaren RE, Brindley D. Digital Technology in Somatic and Gene Therapy Trials of Pediatric Patients With Ocular Diseases: Protocol for a Scoping Review. JMIR Res Protoc 2019; 8:e10705. [PMID: 30730295 PMCID: PMC6383115 DOI: 10.2196/10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/26/2018] [Accepted: 08/26/2018] [Indexed: 11/13/2022] Open
Abstract
Background Pharmacogenomics suggests that diseases with similar symptomatic presentations often have varying genetic causes, affecting an individual patient’s response to a specific therapeutic strategy. Gene therapies and somatic cell therapies offer unique therapeutic pathways for ocular diseases and often depend on increased understanding of the genotype-phenotype relationship in disease presentation and progression. While demand for personalized medicine is increasing and the required molecular tools are available, its adoption within pediatric ophthalmology remains to be maximized in the postgenomic era. Objective The objective of our study was to address the individual hurdles encountered in the field of genomic-related clinical trials and facilitate the uptake of personalized medicine, we propose to conduct a review that will examine and identify the digital technologies used to facilitate data analysis in somatic and gene therapy trials in pediatric patients with ocular diseases. Methods This paper aims to present an outline for Healthcare Information Technology and Information and Communication Technology resources used in somatic and gene therapy clinical trials in children with ocular diseases. This review will enable authors to identify challenges and provide recommendations, facilitating the uptake of genetic and somatic therapies as therapeutic tools in pediatric ophthalmology. The review will also determine whether conducting a systematic review will be beneficial. Results Database searches will be initiated in September 2018. We expect to complete the review in December 2019. Conclusions Based on review findings, the authors will summarize methods used for facilitating IT integration in personalized medicine. Additionally, it will identify further research gaps and determine whether conducting further reviews will be beneficial. International Registered Report Identifier (IRRID) PRR1-10.2196/10705
Collapse
Affiliation(s)
- Edward Meinert
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.,Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Abrar Alturkistani
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Tasnime Osama
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Celine-Lea Halioua-Haubold
- Clinical Ophthalmology Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Josip Car
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Azeem Majeed
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Glenn Wells
- Oxford Academic Health Science Centre, Oxford, United Kingdom
| | - Robert E MacLaren
- Clinical Ophthalmology Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David Brindley
- Healthcare Translation Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Ankathil R, Azlan H, Dzarr AA, Baba AA. Pharmacogenetics and the treatment of chronic myeloid leukemia: how relevant clinically? An update. Pharmacogenomics 2018; 19:475-393. [PMID: 29569526 DOI: 10.2217/pgs-2017-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the excellent efficacy and improved clinical responses obtained with imatinib mesylate (IM), development of resistance in a significant proportion of chronic myeloid leukemia (CML) patients on IM therapy have emerged as a challenging problem in clinical practice. Resistance to imatinib can be due to heterogeneous array of factors involving BCR/ABL-dependent and BCR/ABL-independent pathways. Although BCR/ABL mutation is the major contributory factor for IM resistance, reduced bio-availability of IM in leukemic cells is also an important pharmacokinetic factor that contributes to development of resistance to IM in CML patients. The contribution of polymorphisms of the pharmacogenes in relation to IM disposition and treatment outcomes have been studied by various research groups in numerous population cohorts. However, the conclusions arising from these studies have been highly inconsistent. This review encompasses an updated insight into the impact of pharmacogenetic variability on treatment response of IM in CML patients.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abu Abdullah Dzarr
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Baba
- Department of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
The fourth annual BRDS on genome editing and silencing for precision medicines. Drug Deliv Transl Res 2017; 8:266-272. [PMID: 29209906 DOI: 10.1007/s13346-017-0457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Precision medicine is promising for treating human diseases, as it focuses on tailoring drugs to a patient's genes, environment, and lifestyle. The need for personalized medicines has opened the doors for turning nucleic acids into therapeutics. Although gene therapy has the potential to treat and cure genetic and acquired diseases, it needs to overcome certain obstacles before creating the overall prescription drugs. Recent advancement in the life science has helped to understand the effective manipulation and delivery of genome-engineering tools better. The use of sequence-specific nucleases allows genetic changes in human cells to be easily made with higher efficiency and precision than before. Nanotechnology has made rapid advancement in the field of drug delivery, but the delivery of nucleic acids presents unique challenges. Also, designing efficient and short time-consuming genome-editing tools with negligible off-target effects are in high demand for precision medicine. In the fourth annual Biopharmaceutical Research and Development Symposium (BRDS) held at the University of Nebraska Medical Center (UNMC) on September 7-8, 2017, we covered different facets of developing tools for precision medicine for therapeutic and diagnosis of genetic disorders.
Collapse
|