1
|
Shahzad A, Ur Rehman A, Naz T, Rasool MF, Saeed A, Rasheed S, Shakeel S, Al-Tamimi SK, Hussain R. Addition of Bevacizumab to Chemotherapy and Its Impact on Clinical Efficacy in Cervical Cancer: A Systematic Review and Meta-Analysis. PHARMACY 2024; 12:180. [PMID: 39728845 DOI: 10.3390/pharmacy12060180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background and Objectives: Cervical cancer is the third leading cause of cancer-related mortality in females. One of the most successful therapeutic modalities to date is suppressing vascular endothelial growth factor (VEGF)-mediated angiogenesis. Bevacizumab is a monoclonal antibody that targets VEGF-A. The outcomes for cervical cancer patients treated with bevacizumab in combination with platinum-based chemotherapy have been explored in several studies. This study aimed to assess the impact of bevacizumab on progression-free survival (PFS) and overall survival (OS) in patients with metastatic cervical cancer. Materials and Methods: This systematic review was registered in PROSPERO (CRD42023456755). Following PRISMA guidelines, a comprehensive literature search on PubMed and Google Scholar identified 28 studies meeting the inclusion criteria. The outcomes of interest were PFS and OS. The statistical analysis computed hazard ratios (HRs) with 95% confidence intervals (CIs). The study also included a subgroup analysis by cervical cancer stage. Results: The pooled analysis revealed that bevacizumab-based therapy significantly improved both PFS with HR 0.77 (95% CI: 0.58-0.96; p < 0.01; I2 = 58%) and OS with HR 0.63 (95% CI: 0.45-0.89; p < 0.01; I2 = 41%) in cervical cancer patients. Subgroup analysis by stage of cervical cancer demonstrated better efficacy of bevacizumab in metastatic stage IVB cervical cancer patients indicated by HR for PFS (0.69, 95% CI: 0.54-0.79; p < 0.01) and HR for OS (0.57, 95% CI: 0.46-0.73; p < 0.01). Conclusions: Bevacizumab exhibits a significant increase in PFS and OS, underscoring the efficacy of anti-angiogenesis therapy in cervical cancer, particularly in stage IVB metastatic cervical cancer patients.
Collapse
Affiliation(s)
- Aleena Shahzad
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Anees Ur Rehman
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tehnia Naz
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Alisha Saeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saba Rasheed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sadia Shakeel
- Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan
| | | | - Rabia Hussain
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Penang, Malaysia
| |
Collapse
|
2
|
Sarwar F, Ashhad S, Vimal A, Vishvakarma R. Small molecule inhibitors of the VEGF and tyrosine kinase for the treatment of cervical cancer. Med Oncol 2024; 41:199. [PMID: 38985225 DOI: 10.1007/s12032-024-02446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Cervical cancer accounts for most deaths due to cancer in women, majorly in developing nations. The culprit behind this disease is the human papillomavirus (HPV) which accounts for more than 90% of cervical cancer cases. The viral strains produce proteins that favor the knocking down of the apoptosis process and continuous growth of cells in the cervix leading to tumor growth. Proangiogenic growth factors, such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), angiopoietins, and other endothelial growth factors (EGF), are secreted by tumor cells and the surrounding microenvironment, which further advances the development of cancer. The extracellular domain of receptor tyrosine kinases is employed by ligands (like VEGF and EGF) to engage and activate them by inducing receptor dimerization, which facilitates the cascade impact of these factors. The tyrosine kinase domains of each receptor autophosphorylate each other, activating the receptor and initiating signaling cascades that promote angiogenesis, migration, proliferation, and survival of endothelial cells. Cancer cells benefit from its modified signaling pathways, which cause oncogenic activation. Upon early cervical cancer detection, the second-line therapy strategy involves blocking the signaling pathways with VEGF and small molecule tyrosine kinase inhibitors (TKIs). This review paper highlights the genesis of cervical cancer and combating it using VEGF and tyrosine kinase inhibitors by delving into the details of the currently available inhibitors. Further, we have discussed the inhibitor molecules that are currently in various phases of clinical trials. This paper will surely enhance the understanding of cervical cancer and its treatment approaches and what further interventions can be done to alleviate the disease currently serving as a major health burden in the developing world.
Collapse
Affiliation(s)
- Fatima Sarwar
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Samreen Ashhad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Archana Vimal
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| | - Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
3
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
4
|
Chen Y, Zuo X, Wei Q, Xu J, Liu X, Liu S, Wang H, Luo Q, Wang Y, Yang Y, Zhao H, Xu J, Liu T, Yi P. Upregulation of LRRC8A by m 5C modification-mediated mRNA stability suppresses apoptosis and facilitates tumorigenesis in cervical cancer. Int J Biol Sci 2023; 19:691-704. [PMID: 36632452 PMCID: PMC9830503 DOI: 10.7150/ijbs.79205] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cervical cancer (CC) is one of the most common gynecological malignancies with poor prognosis for advanced CC patients. LRRC8A is a volume-regulated anion channel protein involved in cellular homeostasis, but its role in CC remains largely unknown. In this study, we found that LRRC8A is elevated in CC and associated with poor prognosis. LRRC8A maintains cell survivals under the hypotonic condition, and promotes tumorigenesis through apoptosis suppression in vitro and in vivo. Notably, LRRC8A is upregulated by NSUN2-mediated m5C modification. m5C modified-LRRC8A mRNA is bound by the RNA binding protein YBX1 followed by the increased RNA stability. Moreover, loss of NSUN2 suppresses the proliferation and metastasis of CC cells, and NSUN2 expression is positively correlated with LRRC8A expression in CC. Altogether, our study demonstrates that the NSUN2-m5C-LRRC8A axis is crucial and would be a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Shiling Liu
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qingya Luo
- Department of Pathology, Southwest Hospital, Army Medical Universtiy, Chongqing 400038, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,✉ Corresponding authors: Ping Yi. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail: . Tao Liu. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail:
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.,✉ Corresponding authors: Ping Yi. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail: . Tao Liu. Address: Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. E-mail:
| |
Collapse
|
5
|
Nolasco-Quintana NY, González-Maya L, Razo-Hernández RS, Alvarez L. Exploring the Gallic and Cinnamic Acids Chimeric Derivatives as Anticancer Agents over HeLa Cell Line: An in silico and in vitro Study. Mol Inform 2023; 42:e2200016. [PMID: 36065495 DOI: 10.1002/minf.202200016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
Cervical cancer is one of the most aggressive and important cancer types in the female population, due to its low survival rate. Actually, the search for new bioactive compounds, like gallic and cinnamic acid, is one of the most employed options to finding a treatment. In the present study, 134 phenolic compounds with cytotoxic activity over HeLa cell line were used to generate a descriptive ( R 2 ${{R}^{2}}$ =0.76) and predictive ( Q 2 ${{Q}^{2}}$ =0.69 and Q e x t 2 ${{Q}_{{\rm e}{\rm x}{\rm t}}^{2}}$ =0.62) QSAR model. Structural, electronic, steric, and hydrophobic features are represented as different molecular descriptors in our QSAR model. From this model, nine gallate-cinnamate ester derivatives (N1-N9) were designed and synthesized. Furthermore, in vitro cytotoxic activity was evaluated against HeLa and non-tumorigenic cells. Derivatives N6, N5, N1, and N9 were the most active molecules with IC50ExpHeLa values from 7.26 to 11.95 μM. Finally, the binding of the synthesized compounds to the colchicine binding site on tubulin was evaluated by molecular docking as a possible action mechanism. N1, N5 and N6 can be considered as templates for the design of new cervical anticancer compounds.
Collapse
Affiliation(s)
- Ninfa Yaret Nolasco-Quintana
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México.,Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| |
Collapse
|
6
|
Li C, Liu D, Yang S, Hua K. Integrated single-cell transcriptome analysis of the tumor ecosystems underlying cervical cancer metastasis. Front Immunol 2022; 13:966291. [PMID: 36569924 PMCID: PMC9780385 DOI: 10.3389/fimmu.2022.966291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is one of the most frequent female malignancies worldwide. However, the molecular mechanism of lymph node metastasis in CC remains unclear. In this study, we investigated the transcriptome profile of 51,507 single cells from primary tumors, positive lymph nodes (P-LN), and negative lymph nodes (N-LN) using single-cell sequencing. Validation experiments were performed using bulk transcriptomic datasets and immunohistochemical assays. Our results indicated that epithelial cells in metastatic LN were associated with cell- cycle-related signaling pathways, such as E2F targets, and mitotic spindle, and immune response-related signaling pathways, such as allograft rejection, IL2_STAT5_signaling, and inflammatory response. However, epithelial cells in primary tumors exhibited high enrichment of epithelial-mesenchymal translation (EMT), oxidative phosphorylation, and interferon alpha response. Our analysis then indicated that metastasis LN exhibited an early activated tumor microenvironment (TME) characterized by the decrease of naive T cells and an increase of cytotoxicity CD8 T cells, NK cells, FOXP3+ Treg cells compared with normal LN. By comparing the differently expressed gene of macrophages between tumor and metastatic LN, we discovered that C1QA+ MRC1low macrophages were enriched in a tumor, whereas C1QA+ MRC1high macrophages were enriched in metastatic LN. Finally, we demonstrated that cancer-associated fibroblasts (CAFs) in P-LN were associated with immune regulation, while CAFs in tumor underwent EMT. Our findings offered novel insights into the mechanisms of research, diagnosis, and therapy of CC metastasis.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Danyang Liu
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shimin Yang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China,*Correspondence: Keqin Hua,
| |
Collapse
|
7
|
Mohan N, Wellach K, Özerdem C, Veits N, Förster JD, Foehr S, Bonsack M, Riemer AB. Effects of hypoxia on antigen presentation and T cell-based immune recognition of HPV16-transformed cells. Front Immunol 2022; 13:918528. [DOI: 10.3389/fimmu.2022.918528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Attempts to develop a therapeutic vaccine against human papillomavirus (HPV)-induced malignancies have mostly not been clinically successful to date. One reason may be the hypoxic microenvironment present in most tumors, including cervical cancer. Hypoxia dysregulates the levels of human leukocyte antigen (HLA) class I molecules in different tumor entities, impacts the function of cytotoxic T cells, and leads to decreased protein levels of the oncoproteins E6 and E7 in HPV-transformed cells. Therefore, we investigated the effect of hypoxia on the presentation of HPV16 E6- and E7-derived epitopes in cervical cancer cells and its effect on epitope-specific T cell cytotoxicity. Hypoxia induced downregulation of E7 protein levels in all analyzed cell lines, as assessed by Western blotting. However, contrary to previous reports, no perturbation of antigen processing and presentation machinery (APM) components and HLA-A2 surface expression upon hypoxia treatment was detected by mass spectrometry and flow cytometry, respectively. Cytotoxicity assays performed in hypoxic conditions showed differential effects on the specific killing of HPV16-positive cervical cancer cells by epitope-specific CD8+ T cell lines in a donor- and peptide-specific manner. Effects of hypoxia on the expression of PD-L1 were ruled out by flow cytometry analysis. Altogether, our results under hypoxia show a decreased expression of E6 and E7, but an intact APM, and epitope- and donor-dependent effects on T cell cytotoxicity towards HPV16-positive target cells. This suggests that successful immunotherapies can be developed for hypoxic HPV-induced cervical cancer, with careful choice of target epitopes, and ideally in combination with hypoxia-alleviating measures.
Collapse
|
8
|
You X, Sun W, Wang Y, Liu X, Wang A, Liu L, Han S, Sun Y, Zhang J, Guo L, Zhang Y. Cervical cancer-derived exosomal miR-663b promotes angiogenesis by inhibiting vinculin expression in vascular endothelial cells. Cancer Cell Int 2021; 21:684. [PMID: 34923985 PMCID: PMC8684657 DOI: 10.1186/s12935-021-02379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Angiogenesis provides essential nutrients and oxygen for tumor growth and has become the main mechanism of tumor invasion and metastasis. Exosomes are nanoscale membrane vesicles containing proteins, lipids, mRNA and microRNA (miRNA), which mediate intercellular communication and play an important role in tumor progression. Accumulated evidence indicates that tumor-derived exosomal miRNAs participate in the tumor microenvironment and promote angiogenesis. METHODS Bioinformatic target prediction and dual luciferase reporter assays were performed to identify the binding site between miR-663b and the 3'-UTR of vinculin (VCL). VCL overexpression lentivirus and miR-663b overexpression/inhibition lentivirus were used to create a VCL overexpression model and miR-663b overexpression/inhibition model in-vitro. Immunohistochemistry (IHC) assays and western blot assays were used to detect protein expression. Exosome-cell cocultures, wound healing assays, tube formation assays and transwell assays were used to measure the migration and tube formation ability of vascular endothelial cells [human umbilical vein endothelial cells (HUVECs)]. siRNA targeted VCL was used to knockdown VCL. RESULTS In the present study, we found that miR-663b was elevated in cervical cancer tissue and exosomes. miR-663b could bind the 3'-UTR of VCL and inhibit its expression. VCL is downregulated in cervical cancer, and decreased VCL has a negative correlation with a high level of miR-663b. Further studies demonstrated that exosomes secreted by cervical cancer cells can deliver miR-663b to HUVECs and inhibit the expression of VCL, thereby promoting angiogenesis and tumor growth. CONCLUSIONS miR-663b derived from cancer cell exosomes acts as a driving factor for angiogenesis and a potential target of antiangiogenic therapy in cervical cancer. Our findings illustrated a new signaling pathway, including exosomes, miRNAs and target genes, which provides potential targets for antiangiogenic therapy.
Collapse
Affiliation(s)
- Xuewu You
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.,Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Wenxiong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, People's Republic of China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Aihong Wang
- Department of Obstetrics and Gynecology, Feicheng Hospital Affiliated to Shandong First Medical University, Taian, 271600, Shandong, People's Republic of China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Lingyu Guo
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Yang H, Sun S, Mei Z, Xiang Q, Yang C, Chen M, Xie C, Zhou Y, Qiu H. A Retrospective Cohort Study Evaluates Clinical Value of Anlotinib in Persistent, Metastatic, or Recurrent Cervical Cancer After Failure of First-Line Therapy. Drug Des Devel Ther 2021; 15:4665-4674. [PMID: 34815663 PMCID: PMC8605803 DOI: 10.2147/dddt.s335870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
Background Anlotinib is an oral anti-angiogenesis inhibitor targeting vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors, fibroblast growth factor receptors, etc., and its clinical value in cervical cancer is rarely reported. We designed a retrospective study to evaluate the efficacy and safety of anlotinib in patients with persistent, metastatic, or recurrent cervical cancer who have failed first-line therapy, and compare the efficacy of anlotinib with that of apatinib which targets only VEGFR2 and has shown efficacy in recent studies. Methods Fifty-two patients with persistent, metastatic, or recurrent cervical cancer who failed first-line therapy and administrated anlotinib or apatinib as monotherapy or combination with chemo-, radio- or immunotherapy were included in this study. Among the 52 patients, 20 patients who received anlotinib from January 2019 to August 2020 were defined as anlotinib group, whereas 32 patients who received apatinib from our previous study were selected as apatinib group. The safety, objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS) were reviewed and recorded. Results The ORR and DCR in patients receiving anlotinib were 25% and 80%, respectively. The median PFS and OS in anlotinib group were significantly longer than those in apatinib group, respectively (PFS: 5 months vs 3 months, p=0.015; OS: 10 months vs 5 months, p=0.008). Moreover, the patients treated with anlotinib had better survival with a significantly lower cumulative incidence of cancer-related death than those treated with apatinib (HR=0.31, 95% CI: 0.13–0.77, p=0.012). The most common adverse effects in the patients treated with anlotinib were hypertension (20%), fatigue (20%), and nausea (15%). No drug-related death occurred. Conclusion Anlotinib showed beneficial efficacy and safety and can be a treatment option for patients with persistent, metastatic, or recurrent cervical cancer who have failed the first-line therapy.
Collapse
Affiliation(s)
- Hui Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zijie Mei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Qingming Xiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chunxu Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Min Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Wei J, Gao Y, Li Z, Jia H, Han B. LncRNA SNHG6 facilitates cell proliferation, migration, invasion and EMT by upregulating UCK2 and activating the Wnt/β-catenin signaling in cervical cancer. Bioorg Chem 2021; 120:105488. [PMID: 35033815 DOI: 10.1016/j.bioorg.2021.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023]
Abstract
Cervical cancer is a most prevalent gynecological malignancy around the world. Long non-coding RNAs (lncRNAs) are recognized as crucial players in the cellular activities of diverse cancers including cervical cancer. We aimed to reveal the biological function of lncRNA small nucleolar RNA host gene 6 (SNHG6) in cervical cancer. Our findings illuminated that SNHG6 expression was elevated in cervical cancer tissues and cell lines, and highly expressed SNHG6 was associated with poor outcome in patients with cervical cancer. Moreover, knockdown of SNHG6 repressed cervical cancer development via inhibiting cell proliferation and migration and accelerating cell apoptosis. Further, SNHG6 was a sponge of miR-485-3p and uridine-cytidine kinase 2 (UCK2) was the functional target of miR-485-3p. SNHG6 increased UCK2 expression by binding with miR-485-3p in cervical cancer cells. The rescue experiments showed that SNHG6 contributed to malignant phenotypes of cervical cancer cells by the miR-485-3p/UCK2 axis. Additionally, SNHG6 activated the Wnt/β-catenin pathway to enhance the proliferative and migratory ability of cervical cancer cells. Overall, this work revealed that SNHG6 promoted malignant behaviors of cervical cancer cells by binding with miR-485-3p to regulate UCK2 and activating the Wnt/β-catenin pathway, which may offer a beneficial direction to treat cervical cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - YuHua Gao
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - HaiQing Jia
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Bing Han
- Department of The Sixth General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
11
|
Yu J, Liang LL, Liu J, Liu TT, Li J, Xiu L, Zeng J, Wang TT, Wang D, Liang LJ, Xie DW, Chen DX, An JS, Wu LY. Development and Validation of a Novel Gene Signature for Predicting the Prognosis by Identifying m5C Modification Subtypes of Cervical Cancer. Front Genet 2021; 12:733715. [PMID: 34630524 PMCID: PMC8493221 DOI: 10.3389/fgene.2021.733715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background: 5-Methylcytidine (m5C) is the most common RNA modification and plays an important role in multiple tumors including cervical cancer (CC). We aimed to develop a novel gene signature by identifying m5C modification subtypes of CC to better predict the prognosis of patients. Methods: We obtained the expression of 13 m5C regulatory factors from The Cancer Genome Atlas (TCGA all set, 257 patients) to determine m5C modification subtypes by the "nonnegative matrix factorization" (NMF). Then the "limma" package was used to identify differentially expressed genes (DEGs) between different subtypes. According to these DEGs, we performed Cox regression and Kaplan-Meier (KM) survival analysis to establish a novel gene signature in TCGA training set (128 patients). We also verified the risk prediction effect of gene signature in TCGA test set (129 patients), TCGA all set (257 patients) and GSE44001 (300 patients). Furthermore, a nomogram including this gene signature and clinicopathological parameters was established to predict the individual survival rate. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, colony formation, migration and invasion assays. Results: Based on consistent clustering of 13 m5C-modified genes, CC was divided into two subtypes (C1 and C2) and the C1 subtype had a worse prognosis. The 4-gene signature comprising FNDC3A, VEGFA, OPN3 and CPE was constructed. In TCGA training set and three validation sets, we found the prognosis of patients in the low-risk group was much better than that in the high-risk group. A nomogram incorporating the gene signature and T stage was constructed, and the calibration plot suggested that it could accurately predict the survival rate. The expression levels of FNDC3A, VEGFA, OPN3 and CPE were all high in cervical cancer tissues. Downregulation of FNDC3A, VEGFA or CPE expression suppressed the proliferation, migration and invasion of SiHa cells. Conclusions: Two m5C modification subtypes of CC were identified and then a 4-gene signature was established, which provide new feasible methods for clinical risk assessment and targeted therapies for CC.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei-Lei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting-Ting Liu
- Department of Blood Grouping, Beijing Red Cross Blood Center, Beijing, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Xiu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Tian Wang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Jun Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Da-Wei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ding-Xiong Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ju-Sheng An
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Ying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Pan Q, Meng X, Li J, Qin X, Chen H, Li Y. CircSAMD11 facilitates progression of cervical cancer via regulating miR-503/SOX4 axis through Wnt/β-catenin pathway. Clin Exp Pharmacol Physiol 2021; 49:175-187. [PMID: 34546569 DOI: 10.1111/1440-1681.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 01/15/2023]
Abstract
Cervical cancer (CC) is a common gynaecological malignant tumour with a high mortality rate. Circular RNAs (circRNAs) play a critical role in tumour occurrence and development. This study aimed to investigate the function and molecular basis of hsa_circ_0009189 (circSAMD11) in CC development. RNA levels were determined by qRT-PCR, and protein expression was measured by western blot. Cell proliferation, migration, invasion and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, Transwell and flow cytometry assays. The relationship between miR-503 and circSAMD11/SOX4 was validated via dual-luciferase reporter assay, RIP or RNA pull-down assay. Xenograft assay was conducted to test tumour growth in vivo. CircSAMD11 and SOX4 levels were elevated, while miR-503 level was reduced in CC tissues and cells. Knockdown of circSAMD11 suppressed CC cell proliferation, migration and invasion and accelerated apoptosis. CircSAMD11 was localised in cytoplasm and directly targeted miR-503. Also, circSAMD11 sponged miR-503 to modulate SOX4 expression. Additionally, circSAMD11 regulated CC progression via absorbing miR-503 or modulating SOX4. Besides, depletion of circSAMD11 hindered tumorigenesis in vivo. CircSAMD11 contributed to CC progression by regulating miR-503/SOX4 signalling and activating Wnt/β-catenin pathway, which provides a promising therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Qiwen Pan
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Xia Meng
- Department of Gynaecology, The First People's Hospital of Hechi, Hechi, China
| | - Jianxiang Li
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Xiaoni Qin
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Huifeng Chen
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| | - Yueqing Li
- Department of Gynaecology, Hechi Hospital Affiliated to YouJiang Medical University For Nationalities, The People's Hospital of Hechi, Hechi, China
| |
Collapse
|
13
|
Li C, Guo L, Li S, Hua K. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and transcriptional activities of ECs in CC. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:682-694. [PMID: 33996252 PMCID: PMC8099483 DOI: 10.1016/j.omtn.2021.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Cervical cancer (CC) is the fourth leading cause of deaths in gynecological malignancies. Although the etiology of CC has been extensively investigated, the exact pathogenesis of CC remains incomplete. Recently, single-cell technologies demonstrated advantages in exploring intra-tumoral diversification among various tumor cells. However, single-cell transcriptome analysis (single-cell RNA sequencing [scRNA-seq]) of CC cells and microenvironment has not been conducted. In this study, a total of 20,938 cells from CC and adjacent normal tissues were examined by scRNA-seq. We identified four tumor cell subpopulations in tumor cells, which had specific signature genes with different biological functions and presented different prognoses. Among them, we identified a subset of cancer stem cells (CSCs) that was related to the developmental hierarchy of tumor progression. Then, we compared the expressive differences between tumor-derived endothelial cells (TECs) and normal ECs (NECs) and revealed higher expression of several metabolism-related genes in TECs. Then, we explored the potential biological function of ECs in vascularization and found several marker genes, which played a prior role in connections between cancer cells and ECs. Our findings provide valuable resources for deciphering the intra-tumoral heterogeneity of CC and uncover the developmental procedure of ECs, which paves the way for CC therapy.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Luopei Guo
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
14
|
Gaustad JV, Rofstad EK. Assessment of Hypoxic Tissue Fraction and Prediction of Survival in Cervical Carcinoma by Dynamic Contrast-Enhanced MRI. Front Oncol 2021; 11:668916. [PMID: 34094964 PMCID: PMC8173130 DOI: 10.3389/fonc.2021.668916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023] Open
Abstract
Tumor hypoxia is a major cause of treatment resistance and poor survival in locally-advanced cervical carcinoma (LACC). It has been suggested that Ktrans and ve maps derived by dynamic contrast-enhanced magnetic resonance imaging can provide information on the oxygen supply and oxygen consumption of tumors, but it is not clear whether and how these maps can be combined to identify tumor hypoxia. The aim of the current study was to find the optimal strategy for calculating hypoxic fraction and predicting survival from Ktrans and ve maps in cervical carcinoma. Ktrans and ve maps of 98 tumors of four patient-derived xenograft models of cervical carcinoma as well as 80 patients with LACC were investigated. Hypoxic fraction calculated by using Ktrans maps correlated strongly (P < 0.0001) to hypoxic fraction assessed with immunohistochemistry using pimonidazole as a hypoxia marker and was associated with disease-free and overall survival in LACC patients. Maps of ve did not provide information on hypoxic fraction and patient outcome, and combinations of Ktrans and ve were not superior to Ktrans alone for calculating hypoxic fraction. These observations imply that Ktrans maps reflect oxygen supply and may be used to identify hypoxia and predict outcome in cervical carcinoma, whereas ve is a poor parameter of oxygen consumption and does not provide information on tumor oxygenation status.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Chuai Y, Rizzuto I, Zhang X, Li Y, Dai G, Otter SJ, Bharathan R, Stewart A, Wang A. Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer. Cochrane Database Syst Rev 2021; 3:CD013348. [PMID: 33661538 PMCID: PMC8428759 DOI: 10.1002/14651858.cd013348.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cervical cancer ranks as the fourth leading cause of death from cancer in women. Historically, women with metastatic or recurrent cervical cancer have had limited treatment options. New anti-angiogenesis therapies, such as vascular endothelial growth factor (VEGF) targeting agents, offer an alternative strategy to conventional chemotherapy; they act by inhibiting the growth of new blood vessels, thereby restricting tumour growth by blocking the blood supply. OBJECTIVES To assess the benefits and harms of VEGF targeting agents in the management of persistent, recurrent, or metastatic cervical cancer. SEARCH METHODS We performed searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, online registers of clinical trials, and abstracts of scientific meetings up until 27 May 2020. SELECTION CRITERIA We examined randomised controlled trials (RCTs) that evaluated the use of VEGF targeting agents alone or in combination with conventional chemotherapy or other VEGF targeting agents. DATA COLLECTION AND ANALYSIS Three review authors independently screened the results of search strategies, extracted data, assessed risk of bias, and analysed data according to the standard methods expected by Cochrane. The certainty of evidence was assessed via the GRADE approach. MAIN RESULTS A total of 1634 records were identified. From these, we identified four studies with a total of 808 participants for inclusion. We also identified two studies that were awaiting classification and nine ongoing studies. Bevacizumab plus chemotherapy versus chemotherapy Treatment with bevacizumab plus chemotherapy may result in lower risk of death compared to chemotherapy alone (hazard ratio (HR) 0.77, 95% confidence interval (CI) 0.62 to 0.95; 1 study, 452 participants; low-certainty evidence). However, there are probably more specific adverse events when compared to chemotherapy alone, including gastrointestinal perforations or fistulae (risk ratio (RR) 18.00, 95% CI 2.42 to 133.67; 1 study, 440 participants; moderate-certainty evidence); serious thromboembolic events (RR 4.5, 95% CI 1.55 to 13.08; 1 study, 440 participants; moderate-certainty evidence); and hypertension (RR 13.75, 95% CI 5.07 to 37.29; 1 study, 440 participants; moderate-certainty evidence). There may also be a higher incidence of serious haemorrhage (RR 5.00, 95% CI 1.11 to 22.56; 1 study, 440 participants; low-certainty evidence). In addition, the incidence of serious adverse events is probably higher (RR 1.44, 95% CI 1.16 to 1.79; 1 study, 439 participants; moderate-certainty evidence). The incremental cost-effectiveness ratio was USD 295,164 per quality-adjusted life-year (1 study, 452 participants; low-certainty evidence). Cediranib plus chemotherapy versus chemotherapy Treatment with cediranib plus chemotherapy may or may not result in similar risk of death when compared to chemotherapy alone (HR 0.94, 95% CI 0.53 to 1.65; 1 study, 69 participants; low-certainty evidence). We found very uncertain results for the incidences of specific adverse events, including gastrointestinal perforations or fistulae (RR 3.27, 95% CI 0.14 to 77.57; 1 study, 67 participants; very low-certainty evidence); serious haemorrhage (RR 5.45, 95% CI 0.27 to 109.49; 1 study, 67 participants; very low-certainty evidence); serious thromboembolic events (RR 3.41, 95% CI 0.14 to 80.59; 1 study, 60 participants; very low-certainty evidence); and serious hypertension (RR 0.36, 95% CI 0.02 to 8.62; 1 study, 67 participants; very low-certainty evidence). In addition, there may or may not be a similar incidence of serious adverse events compared to chemotherapy alone (RR 1.15, 95% CI 0.75 to 1.78; 1 study, 67 participants; low-certainty evidence). Apatinib plus chemotherapy or chemotherapy/brachytherapy versus chemotherapy or chemotherapy/brachytherapy Treatment with apatinib plus chemotherapy or chemotherapy/brachytherapy may or may not result in similar risk of death compared to chemotherapy alone or chemotherapy/brachytherapy alone (HR 0.90, 95% CI 0.51 to 1.60; 1 study, 52 participants; low-certainty evidence). However, hypertension events may occur at a higher incidence as compared to chemotherapy alone or chemotherapy/brachytherapy alone (RR 5.14, 95% CI 1.28 to 20.73; 1 study, 52 participants; low-certainty evidence). Pazopanib plus lapatinib versus lapatinib Treatment with pazopanib plus lapatinib may result in higher risk of death compared to lapatinib alone (HR 2.71, 95% CI 1.16 to 6.31; 1 study, 117 participants; low-certainty evidence). We found very uncertain results for the incidences of specific adverse events, including gastrointestinal perforations or fistulae (RR 2.00, 95% CI 0.19 to 21.59; 1 study, 152 participants; very low-certainty evidence); haemorrhage (RR 2.00, 95% CI 0.72 to 5.58; 1 study, 152 participants; very low-certainty evidence); and thromboembolic events (RR 3.00, 95% CI 0.12 to 72.50; 1 study, 152 participants; very low-certainty evidence). In addition, the incidence of hypertension events is probably higher (RR 12.00, 95% CI 2.94 to 49.01; 1 study, 152 participants; moderate-certainty evidence). There may or may not be a similar incidence of serious adverse events as compared to lapatinib alone (RR 1.45, 95% CI 0.94 to 2.26; 1 study, 152 participants; low-certainty evidence). Pazopanib versus lapatinib Treatment with pazopanib may or may not result in similar risk of death as compared to lapatinib (HR 0.96, 95% CI 0.67 to 1.38; 1 study, 152 participants; low-certainty evidence). We found very uncertain results for the incidences of specific adverse events, including gastrointestinal perforations or fistulae (RR 1.03, 95% CI 0.07 to 16.12; 1 study, 150 participants; very low-certainty evidence); haemorrhage (RR 1.03, 95% CI 0.31 to 3.40; 1 study, 150 participants; very low-certainty evidence); and thromboembolic events (RR 3.08, 95% CI 0.13 to 74.42; 1 study, 150 participants; very low-certainty evidence). In addition, the incidence of hypertension events is probably higher (RR 11.81, 95% CI 2.89 to 48.33; 1 study, 150 participants; moderate-certainty evidence). The risk of serious adverse events may or may not be similar as compared to lapatinib (RR 1.31, 95% CI 0.83 to 2.07; 1 study, 150 participants; low-certainty evidence). AUTHORS' CONCLUSIONS We found low-certainty evidence in favour of the use of bevacizumab plus chemotherapy. However, bevacizumab probably increases specific adverse events (gastrointestinal perforations or fistulae, thromboembolic events, hypertension) and serious adverse events. We found low-certainty evidence that does not support the use of cediranib plus chemotherapy, apatinib plus chemotherapy, apatinib plus chemotherapy/brachytherapy, or pazopanib monotherapy. We found low-certainty evidence suggesting that pazopanib plus lapatinib worsens outcomes. The VEGF inhibitors apatinib and pazopanib may increase the probability of hypertension events.
Collapse
Affiliation(s)
- Yunhai Chuai
- Department of Obstetrics and Gynaecology, Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Ivana Rizzuto
- Department of Gynaecological Oncology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Xia Zhang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- Department of Oncology, Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ying Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- Department of Oncology, Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guanghai Dai
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
- Department of Oncology, Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | | | - Rasiah Bharathan
- Department of Gynaecological Oncology, University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester, UK
| | | | - Aiming Wang
- Department of Obstetrics and Gynaecology, Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
16
|
Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, Pourghadamyari H, Rahimian N, Hamblin MR, Mirzaei H. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021; 161:314-327. [PMID: 33581845 DOI: 10.1016/j.ygyno.2021.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 02/08/2023]
Abstract
Gynecologic cancer is a group of any malignancies affecting reproductive tissues and organs of women, including ovaries, uterine, cervix, vagina, vulva, and endometrium. Several types of molecular mechanisms are associated with the progression of gynecologic cancers. Among it can be referred to the most widely studied non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long ncRNAs (lncRNAs). As yet, lncRNAs are known to serve key biological roles via various mechanisms, such as splicing regulation, chromatin rearrangement, translation regulation, cell-cycle control, genetic imprinting and mRNA decay. Besides, miRNAs govern gene expression by modulation of mRNAs and lncRNAs degradation, suggestive of needing more research in this field. Generally, driving gynecological cancers pathways by miRNAs and lncRNAs lead to the current improvement in cancer-related technologies. Exosomes are extracellular microvesicles which can carry cargo molecules among cells. In recent years, more studies have been focused on exosomal non-coding RNAs (exo-ncRNAs) and exosomal microRNAs (exo-miRs) because of being natural carriers of lnc RNAs and microRNAs via programmed process. In this review we summarized recent reports concerning the function of exosomal microRNAs and exosomal long non-coding RNAs in gynecological cancers.
Collapse
Affiliation(s)
| | - Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mina Rohani Borj
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Qiu JJ, Sun SG, Tang XY, Lin YY, Hua KQ. Extracellular vesicular Wnt7b mediates HPV E6-induced cervical cancer angiogenesis by activating the β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:260. [PMID: 33234148 PMCID: PMC7687741 DOI: 10.1186/s13046-020-01745-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Background The E6 oncoproteins of human papillomavirus (HPV) 16/18 are the critical drivers of cervical cancer (CC) progression. Extracellular vesicles (EVs) are emerging as critical mediators of cancer-tumor microenvironment (TME) communication. However, whether EVs contribute to HPV 16/18 E6-mediated impacts on CC progression remains unclear. Methods A series of in vitro and in vivo assays were performed to elucidate the roles and mechanism of EV-Wnt7b in HPV E6-induced CC angiogenesis. The prognostic value of serum EV-Wnt7b was determined and a predictive nomogram model was established. Results HPV 16/18 E6 upregulated Wnt7b mRNA expression in four HPV 16/18-positive CC cell lines and their EVs. In vitro and in vivo experiments demonstrated that EV-Wnt7b mRNA was transferred to and modulated human umbilical vein endothelial cells (HUVECs) toward more proliferative and proangiogenic behaviors by impacting β-catenin signaling. Clinically, serum EV-Wnt7b levels were elevated in CC patients and significantly correlated with an aggressive phenotype. Serum EV-Wnt7b was determined to be an independent prognostic factor for CC overall survival (OS) and recurrence-free survival (RFS). Notably, we successfully established a novel predictive nomogram model using serum EV-Wnt7b, which showed good prediction of 1- and 3-year OS and RFS. Conclusions Our results illustrate a potential crosstalk between HPV 16/18-positive CC cells and HUVECs via EVs in the TME and highlight the potential of circulating EV-Wnt7b as a novel predictive biomarker for CC prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01745-1.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Shu-Gen Sun
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Xiao-Yan Tang
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Ying-Ying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Ke-Qin Hua
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China.
| |
Collapse
|
18
|
Mei J, Xing Y, Lv J, Gu D, Pan J, Zhang Y, Liu J. Construction of an immune-related gene signature for prediction of prognosis in patients with cervical cancer. Int Immunopharmacol 2020; 88:106882. [PMID: 32799114 DOI: 10.1016/j.intimp.2020.106882] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Cervical cancer (CeCa) is becoming an intractable public health issue worldwide. Emerging evidence uncovers that the tumor progression and prognosis of patients with CeCa are tightly associated with the abundance of tumor-infiltrating immune cells. In the current study, the abundance of tumor-infiltrating immune cells in CeCa samples was assessed by using the ssGSEA, thereby generating two immune-related groups according to the immune status. A 4-gene prognostic signature (RIPOR2, DAAM2, SORBS1, and CXCL8) was next established based on the grouping and its predictive capability was validated by multiple analyses. The TIMER database was used to evaluate the association between 4 hub gene expression and immune cell infiltration. Immunophenoscore (IPS) was used to assess response to immune checkpoint inhibitors in CeCa samples. As the results, a novel grouping strategy based on immune cell infiltration was developed and validated. Based on the grouping, a 4-gene signature was identified to be an independent prognostic indicator for overall survival (OS) in CeCa patients. Among the 4 hub genes, RIPOR2 and CXCL8 expression were significantly correlated with immune cell infiltration. Besides, higher immune checkpoints expression and IPS scores were found in the 4-gene signature low-risk group, suggesting a more immunoactive status that tended to respond to immune checkpoint inhibitors. To sum up, a novel immune-related signature is established to predict CeCa patients' prognosis and also associated with response to immune checkpoint inhibitors, which might be a promising prognostic stratification strategy and innovate therapeutic management.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu, China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jinru Lv
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Dingyi Gu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu, China
| | - Jiadong Pan
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi 214000, Jiangsu, China.
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
19
|
Chen X, Cao R, Liu H, Zhang T, Yuan X, Xu S. MicroRNA‑15a‑5p‑targeting oncogene YAP1 inhibits cell viability and induces cell apoptosis in cervical cancer cells. Int J Mol Med 2020; 46:1301-1310. [PMID: 32945353 PMCID: PMC7447307 DOI: 10.3892/ijmm.2020.4704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to have important regulatory roles in the progression of several types of cancer, including cervical cancer (CC). However, the biological roles and regulatory mechanisms of miRNAs in CC remain to be fully elucidated. The aim of the present study was to examine the functions of miRNAs in CC and the possible mechanisms. Using a microarray, it was identified that miRNA-15a-5p (miR-15a-5p) was one of the most down-regulated miRNAs in CC tissues compared with adjacent noncancerous tissues. The low expression of miR-15a-5p was observed in CC tumor tissues with distant metastasis and in CC cell lines. In addition, the effects of miR-15a-5p upregulation on cell viability, apoptosis, invasion and migration of CC cells were investigated using CCK-8, flow cytometry, Transwell and wound healing assays, respectively. It was demonstrated that upregulation of miR-15a-5p significantly suppressed the viability, migration and invasion, and promoted the apoptosis of SiHa and C-33A cells. Furthermore, yes-associated protein 1 (YAP1), a well-known oncogene, was confirmed to be directly targeted by miR-15a-5p and was found to be negatively regulated by miR-15a-5p. Further correlation analysis indicated that miR-15a-5p expression was negatively correlated with YAP1 expression in CC tissues. Notably, overexpression of YAP1 abrogated the tumor suppressive effects of miR-15a-5p in CC cells. Taken together, these present findings indicated that the miR-15a-5p/YAP1 axis may provide a novel strategy for the clinical treatment of CC.
Collapse
Affiliation(s)
- Xu Chen
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Ruiqin Cao
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Haifang Liu
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| | - Tuanying Zhang
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xinrong Yuan
- Department of Obstetrics and Gynaecology, No.1 Hospital of Naval Force of Southern Theater Command, PLA, Zhanjiang, Guangdong 524005, P.R. China
| | - Shuxiang Xu
- Department of Obstetrics and Gynaecology, Huashan Hospital North, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
20
|
Rizzuto I, Otter SJ, Bharathan R, Stewart A. Vascular endothelial growth factor (VEGF) inhibitors for the treatment of metastatic and recurrent cervical cancer. Hippokratia 2020. [DOI: 10.1002/14651858.cd013605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivana Rizzuto
- Department of Gynaecological Oncology; Royal Brisbane and Women’s Hospital; Brisbane Australia
| | | | - Rasiah Bharathan
- Department of Gynaecological Oncology; University Hospitals of Leicester NHS Trust, Leicester General Hospital; Leicester UK
| | | |
Collapse
|
21
|
Du Q, Wang W, Liu T, Shang C, Huang J, Liao Y, Qin S, Chen Y, Liu P, Liu J, Yao S. High Expression of Integrin α3 Predicts Poor Prognosis and Promotes Tumor Metastasis and Angiogenesis by Activating the c-Src/Extracellular Signal-Regulated Protein Kinase/Focal Adhesion Kinase Signaling Pathway in Cervical Cancer. Front Oncol 2020; 10:36. [PMID: 32117712 PMCID: PMC7033469 DOI: 10.3389/fonc.2020.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer remains a leading cause of death in women due to metastasis to distant tissues and organs. Integrins are involved in cancer metastasis. However, whether integrin α3 participates in cervical cancer metastasis is under investigation. In this study, we explored the effect and detailed mechanism through which integrin α3 regulates cervical cell migration, invasion, and angiogenesis. Methods: First, we explored the mRNA and protein expression levels of integrin α3 in cervical cancer cell lines and tissue samples obtained from patients. After knocking down the expression of integrin α3 using shRNA, the proliferation, migration, and invasion of cervical cancer cells, as well as the possible signaling pathways involved, were investigated in vitro. In addition, tube formation, proliferation, and migration of human umbilical vein endothelial cells were tested to identify their effect on angiogenesis. Zebrafish tumor migration and nude mouse lung metastasis models were utilized for the in vivo analysis. Results: We examined samples from 142 patients with cervical cancer and 20 normal cervixes. Integrin α3 was highly expressed in patients and predicted poor overall survival and disease-free survival. In SiHa cells, treatment with integrin α3 shRNA induced the phosphorylation of protein focal adhesion kinase and enhanced focal adhesion. These events were mediated by the activation of c-Src and extracellular signal-regulated protein kinase cascades. Consequently, integrin α3 increased the migratory ability of SiHa cells. In addition, knockdown of integrin α3 decreased the tube formation, proliferation, and migration of human umbilical vein endothelial cells, as well as the levels of matrix metalloproteinase-9, indicating its effect on angiogenesis. Stable transfection with integrin α3 shRNA reduced the migratory ability of SiHa cells in the zebrafish model and diminished lung metastasis in the xenograft mouse model. Conclusion: Integrin α3 recruits the c-Src/extracellular signal-regulated protein kinase cascade, leading to phosphorylation of focal adhesion kinase. Moreover, it regulates focal adhesion, endowing cervical cancer cells with potentiated migratory and invasive ability, and promotes angiogenesis via matrix metalloproteinase-9. Our findings may shed light on the mechanism involved in cervical cancer metastasis and highlight integrin α3 as a candidate prognostic biomarker and therapeutic target in patients with cervical cancer.
Collapse
Affiliation(s)
- Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Chen C, Qin S, Li Z, Luo X, Zhang Y, Zhang J, Liu X. A retrospective six-patient series of apatinib for the treatment of persistent or recurrent carcinoma of the cervix. Onco Targets Ther 2019; 12:5805-5811. [PMID: 31410025 PMCID: PMC6643513 DOI: 10.2147/ott.s212536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Objective Although advances have been made in the clinical and therapeutic management of women with cervical cancer, the best treatment for patients with metastatic or recurrent cervical cancer is still undefined. Apatinib, a novel inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinases, has been successful in treating various malignancies. This study was conducted to evaluate the efficacy and safety of apatinib in the treatment of recurrent cervical cancer. Methods Patients with recurrent cervical cancer received apatinib after failure of the second- or higher-line chemotherapy. Apatinib was administered as 500 mg daily on days 1 through 21 of each 4-week cycle. The primary endpoint was overall survival (OS), and the secondary endpoints included progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events were reviewed and evaluated. Results Six patients were administered apatinib for at least one complete cycle. The median OS was 16.0 months (95% CI: 6.8–25.2), and the median PFS was 7.0 months (95% CI: 2.2–11.8), One patient achieved partial response and three patients achieved stable disease. Two patients were evaluated as progression disease. The ORR was 16.7% (1/6) and the DCR was 67.7% (4/6). The common side effect of apatinib was hypertension; however, the toxicity of apatinib was tolerable and controllable. Conclusions Apatinib is an option in the treatment of recurrent cervical cancer after failure of the second- or higher-line chemotherapy. Further prospective evaluation of the utility of apatinib is required.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| | - Shukui Qin
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| | - Zixiong Li
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| | - Xianwen Luo
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| | - Yu Zhang
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| | - Jue Zhang
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| | - Xiufeng Liu
- Department of Medical Oncology of PLA Cancer Center, Jinling Hospital, Nanjing 210002, People's Republic of China
| |
Collapse
|
23
|
Wu XG, Zhou CF, Zhang YM, Yan RM, Wei WF, Chen XJ, Yi HY, Liang LJ, Fan LS, Liang L, Wu S, Wang W. Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 2019; 22:397-410. [PMID: 30993566 DOI: 10.1007/s10456-019-09665-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Abstract
AIMS Recently, cancer-derived exosomes were shown to have pro-metastasis function in cancer, but the mechanism remains unclear. Angiogenesis is essential for tumor progression and is a great promising therapeutic target for advanced cervical cancer. Here, we investigated the role of cervical cancer cell-secreted exosomal miR-221-3p in tumor angiogenesis. METHODS AND RESULTS miR-221-3p was found to be closely correlated with microvascular density in cervical squamous cell carcinoma (CSCC) by evaluating the microvascular density with immunohistochemistry and miR-221-3p expression with in situ hybridization in clinical specimens. Using the groups of CSCC cell lines (SiHa and C33A) with miR-221-3p overexpression and silencing, the CSCC exosomes were characterized by electron microscopy, western blotting, and fluorescence microscopy. The enrichment of miR-221-3p in CSCC exosomes and its transfer into human umbilical vein endothelial cells (HUVECs) were confirmed by qRT-PCR. CSCC exosomal miR-221-3p promoted angiogenesis in vitro in Matrigel tube formation assay, spheroid sprouting assay, migration assay, and wound healing assay. Then, exosome intratumoral injection indicated that CSCC exosomal miR-221-3p promoted tumor growth in vivo. Thrombospondin-2 (THBS2) was bioinformatically predicted to be a direct target of miR-221-3p, and this was verified by using the in vitro and in vivo experiments described above. Additionally, overexpression of THBS2 in HUVECs rescued the angiogenic function of miR-221-3p. CONCLUSIONS Our results suggest that CSCC exosomes transport miR-221-3p from cancer cells to vessel endothelial cells and promote angiogenesis by downregulating THBS2. Therefore, CSCC-derived exosomal miR-221-3p could be a possible novel diagnostic biomarker and therapeutic target for CSCC progression.
Collapse
Affiliation(s)
- Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, 510515, Guangzhou, China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Wen-Fei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Hong-Yan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, 510515, Guangzhou, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China. .,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
24
|
Sun B, Zhang Y, Zhou L, Yin L, Li F, Li C, Xia J. The proliferation of cervical cancer is promoted by miRNA-125b through the regulation of the HMGA1. Onco Targets Ther 2019; 12:2767-2776. [PMID: 31043793 PMCID: PMC6469475 DOI: 10.2147/ott.s197740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background It has been reported that miRNA-125b is associated with carcinogenesis and development of several different kinds of cancers. Nevertheless, there is no clarity regarding the significance and mechanism of action of miR-125b in clinical practice for cervical cancer (CC). Materials and methods In the current investigation, the expression of miR-125b in cervical clinical specimens and CC cell lines was analyzed via real-time quantitative PCR, and the relationship of miR-125b with the chromatin-associated protein high mobility group A (HMGA1) expression and clinicopathological parameters of CC patients was explored. Results The results indicated that miR-125b expression was remarkably upregulated in CC cell lines as well as in the tissues of humans. miR-125b overexpression was significantly related to a decrease in HMGA1 expression, progression-free survival, overall survival, and prognosis as well. Besides, knockdown of miR-125b inhibited proliferation and colony formation in SW756 and C4-1 cells, where the 3'-UTR of HMGA1 mRNA was directly targeted. Moreover, PI3K/Akt pathway was regulated by miR-125b through suppression of HMGA1. Conclusion These findings illustrated that a new regulatory role of HMGA1 is involved in the progression of CC. Our data demonstrated that miR-125b could play a critical role in the carcinogenesis and progression of CC, revealing that miR-125b might serve as a potential new target for treating CC.
Collapse
Affiliation(s)
- Bingmei Sun
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Lianxiang Zhou
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Linin Yin
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Fei Li
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Chao Li
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| | - Jiayu Xia
- Department of Gynaecology and Obstetrics, Linyi Central Hospital, Linyi 276400, Shandong Province, China,
| |
Collapse
|
25
|
Hauge A, Gaustad JV, Huang R, Simonsen TG, Wegner CS, Andersen LMK, Rofstad EK. DCE-MRI and Quantitative Histology Reveal Enhanced Vessel Maturation but Impaired Perfusion and Increased Hypoxia in Bevacizumab-Treated Cervical Carcinoma. Int J Radiat Oncol Biol Phys 2019; 104:666-676. [PMID: 30858145 DOI: 10.1016/j.ijrobp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE This study had a dual purpose: to investigate (1) whether bevacizumab can change the microvasculature and oxygenation of cervical carcinomas and (2) whether any changes can be detected with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS AND MATERIALS Two patient-derived xenograft models of cervical cancer (BK-12 and HL-16) were included in the study. Immunostained histologic preparations from untreated and bevacizumab-treated tumors were analyzed with respect to microvascular density, vessel pericyte coverage, and tumor hypoxia using CD31, α-SMA, and pimonidazole as markers, respectively. DCE-MRI was performed at 7.05 T, and parametric images of Ktrans and ve were derived from the data using the Tofts pharmacokinetic model. RESULTS The tumors of both models showed decreased microvascular density, increased vessel pericyte coverage, and increased vessel maturation after bevacizumab treatment. Bevacizumab-treated tumors were more hypoxic and had lower Ktrans values than untreated tumors in the BK-12 model, whereas bevacizumab-treated and untreated HL-16 tumors had similar hypoxic fractions and similar Ktrans values. Significant correlations were found between median Ktrans and hypoxic fraction, and the data for untreated and bevacizumab-treated tumors were well fitted by the same curve in both tumor models. CONCLUSIONS Bevacizumab-treated tumors show less abnormal microvessels than untreated tumors do, but because of treatment-induced vessel pruning, the overall function of the microvasculature might be impaired after bevacizumab treatment, resulting in increased tumor hypoxia. DCE-MRI has great potential for monitoring bevacizumab-induced changes in tumor hypoxia in cervical carcinoma.
Collapse
Affiliation(s)
- Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
26
|
Simonsen TG, Lund KV, Hompland T, Kristensen GB, Rofstad EK. DCE-MRI–Derived Measures of Tumor Hypoxia and Interstitial Fluid Pressure Predict Outcomes in Cervical Carcinoma. Int J Radiat Oncol Biol Phys 2018; 102:1193-1201. [DOI: 10.1016/j.ijrobp.2018.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
|
27
|
microRNA-141-3p fosters the growth, invasion, and tumorigenesis of cervical cancer cells by targeting FOXA2. Arch Biochem Biophys 2018; 657:23-30. [PMID: 30222949 DOI: 10.1016/j.abb.2018.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022]
Abstract
microRNA (miR)-141-3p has context-dependent effects on tumor progression. In this study, we attempted to explore the expression and function of miR-141-3p in cervical cancer. We found that miR-141-3p expression was significantly increased in cervical cancer specimens relative to normal cervical tissues. Moreover, miR-141-3p levels were associated with tumor size and lymph node metastasis status. Ectopic expression of miR-141-3p significantly increased cervical cancer cell proliferation, colony formation, invasion, and epithelial to mesenchymal transition, whereas depletion of miR-141-3p suppressed cervical cancer cell proliferation and invasion. FOXA2 was identified to be a target of miR-141-3p. Overexpression of miR-141-3p led to a marked inhibition of endogenous FOXA2 in cervical cancer cells. FOXA2 silencing phenocopied the effects of miR-141-3p overexpression on cervical cancer cell proliferation and invasion. Enforced expression of FOXA2 blocked the effects of miR-141-3p on cervical cancer cell proliferation and invasion. miR-141-3p overexpression significantly accelerated the growth of xenograft tumors, which was accompanied by a striking reduction in FOXA2 expression. miR-141-3p acts as an oncogene in cervical cancer largely through repression of FOXA2. Targeting miR-141-3p may represent a potential therapeutic strategy for cervical cancer.
Collapse
|