1
|
Calheiros-Lobo M, Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Exploring the Therapeutic Implications of Co-Targeting the EGFR and Spindle Assembly Checkpoint Pathways in Oral Cancer. Pharmaceutics 2024; 16:1196. [PMID: 39339232 PMCID: PMC11435222 DOI: 10.3390/pharmaceutics16091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading to significant disfigurement and functional impairments, such as swallowing and speech difficulties. Despite advancements in understanding OSCC's genetic and epigenetic variations, survival rates for advanced stages remain low, highlighting the need for new treatment options. Primary treatment includes surgery, often combined with radiotherapy (RT) and chemotherapy (CT). Cetuximab-based chemotherapy, targeting the overexpressed epidermal growth factor receptor (EGFR) in 80-90% of HNCs, is commonly used but correlates with poor prognosis. Additionally, monopolar spindle 1 (MPS1), a spindle assembly checkpoint (SAC) component, is a significant target due to its role in genomic fidelity during mitosis and its overexpression in several cancers. This review explores EGFR and MPS1 as therapeutic targets in HNC, analyzing their molecular mechanisms and the effects of their inhibition on cancer cells. It also highlights the promise of combinatorial approaches, such as microtubule-targeting agents (MTAs) and antimitotic agents, in improving HNC therapies, patient outcomes, and survival rates.
Collapse
Affiliation(s)
- Mafalda Calheiros-Lobo
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Medicine and Oral Surgery Department, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
2
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
3
|
Silva P, Janjan N, Ramos KS, Udeani G, Zhong L, Ory MG, Smith ML. External control arms: COVID-19 reveals the merits of using real world evidence in real-time for clinical and public health investigations. Front Med (Lausanne) 2023; 10:1198088. [PMID: 37484840 PMCID: PMC10359981 DOI: 10.3389/fmed.2023.1198088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Randomized controlled trials are considered the 'gold standard' to reduce bias by randomizing patients to an experimental intervention, versus placebo or standard of care cohort. There are inherent challenges to enrolling a standard of care or cohorts: costs, site engagement logistics, socioeconomic variability, patient willingness, ethics of placebo interventions, cannibalizing the treatment arm population, and extending study duration. The COVID-19 pandemic has magnified aspects of constraints in trial recruitment and logistics, spurring innovative approaches to reducing trial sizes, accelerating trial accrual while preserving statistical rigor. Using data from medical records and databases allows for construction of external control arms that reduce the costs of an external control arm (ECA) randomized to standard of care. Simultaneously examining covariates of the clinical outcomes in ECAs that are being measured in the interventional arm can be particularly useful in phase 2 trials to better understand social and genetic determinants of clinical outcomes that might inform pivotal trial design. The FDA and EMA have promulgated a number of publicly available guidance documents and qualification reports that inform the use of this regulatory science tool to streamline clinical development, of phase 4 surveillance, and policy aspects of clinical outcomes research. Availability and quality of real-world data (RWD) are a prevalent impediment to the use of ECAs given such data is not collected with the rigor and deliberateness that characterizes prospective interventional control arm data. Conversely, in the case of contemporary control arms, a clinical trial outcome can be compared to a contemporary standard of care in cases where the standard of care is evolving at a fast pace, such as the use of checkpoint inhibitors in cancer care. Innovative statistical methods are an essential aspect of an ECA strategy and regulatory paths for these innovative approaches have been navigated, qualified, and in some cases published.
Collapse
Affiliation(s)
- Patrick Silva
- Institute of Bioscience and Technology and Department of Translational Medical Sciences, College Station, TX, United States
| | - Nora Janjan
- Center for Community Health and Aging, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Kenneth S. Ramos
- Institute of Bioscience and Technology and Department of Translational Medical Sciences, College Station, TX, United States
| | - George Udeani
- Department of Clinical Pharmacy, School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Lixian Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Marcia G. Ory
- Center for Community Health and Aging, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Matthew Lee Smith
- Center for Community Health and Aging, School of Public Health, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Combination Therapy as a Promising Way to Fight Oral Cancer. Pharmaceutics 2023; 15:1653. [PMID: 37376101 PMCID: PMC10301495 DOI: 10.3390/pharmaceutics15061653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Oral cancer is a highly aggressive tumor with invasive properties that can lead to metastasis and high mortality rates. Conventional treatment strategies, such as surgery, chemotherapy, and radiation therapy, alone or in combination, are associated with significant side effects. Currently, combination therapy has become the standard practice for the treatment of locally advanced oral cancer, emerging as an effective approach in improving outcomes. In this review, we present an in-depth analysis of the current advancements in combination therapies for oral cancer. The review explores the current therapeutic options and highlights the limitations of monotherapy approaches. It then focuses on combinatorial approaches that target microtubules, as well as various signaling pathway components implicated in oral cancer progression, namely, DNA repair players, the epidermal growth factor receptor, cyclin-dependent kinases, epigenetic readers, and immune checkpoint proteins. The review discusses the rationale behind combining different agents and examines the preclinical and clinical evidence supporting the effectiveness of these combinations, emphasizing their ability to enhance treatment response and overcome drug resistance. Challenges and limitations associated with combination therapy are discussed, including potential toxicity and the need for personalized treatment approaches. A future perspective is also provided to highlight the existing challenges and possible resolutions toward the clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
5
|
Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:31. [PMID: 36646686 PMCID: PMC9842704 DOI: 10.1038/s41392-022-01297-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer (HNC) is malignant, genetically complex and difficult to treat and is the sixth most frequent cancer, with tobacco, alcohol and human papillomavirus being major risk factors. Based on epigenetic data, HNC is remarkably heterogeneous, and treatment remains challenging. There is a lack of significant improvement in survival and quality of life in patients with HNC. Over half of HNC patients experience locoregional recurrence or distal metastasis despite the current multiple traditional therapeutic strategies and immunotherapy. In addition, resistance to chemotherapy, radiotherapy and some targeted therapies is common. Therefore, it is urgent to explore more effective and tolerable targeted therapies to improve the clinical outcomes of HNC patients. Recent targeted therapy studies have focused on identifying promising biomarkers and developing more effective targeted therapies. A well understanding of the pathogenesis of HNC contributes to learning more about its inner association, which provides novel insight into the development of small molecule inhibitors. In this review, we summarized the vital signaling pathways and discussed the current potential therapeutic targets against critical molecules in HNC, as well as presenting preclinical animal models and ongoing or completed clinical studies about targeted therapy, which may contribute to a more favorable prognosis of HNC. Targeted therapy in combination with other therapies and its limitations were also discussed.
Collapse
Affiliation(s)
- Qingfang Li
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- grid.13291.380000 0001 0807 1581Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Scarini JF, Lavareze L, Lima-Souza RAD, Emerick C, Gonçalves MT, Figueiredo-Maciel T, Vieira GDS, Kimura TDC, de Sá RS, Aquino IG, Fernandes PM, Kowalski LP, Altemani A, Mariano FV, Egal ESA. Head and neck squamous cell carcinoma: Exploring frontiers of combinatorial approaches with tyrosine kinase inhibitors and immune checkpoint therapy. Crit Rev Oncol Hematol 2022; 180:103863. [DOI: 10.1016/j.critrevonc.2022.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
|
7
|
Long Z, Grandis JR, Johnson DE. Emerging tyrosine kinase inhibitors for head and neck cancer. Expert Opin Emerg Drugs 2022; 27:333-344. [PMID: 36131561 PMCID: PMC9987561 DOI: 10.1080/14728214.2022.2125954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Conventional regimens for head and neck squamous cell carcinoma (HNSCC) are limited in efficacy and are associated with adverse toxicities. Food and Drug Administration (FDA) approved molecular targeting agents include the HER1 (EGFR)-directed monoclonal antibody cetuximab and the immune checkpoint inhibitors nivolumab and pembrolizumab. However, clinical benefit is only seen in roughly 15-20% of HNSCC patients treated with these agents. New molecular targeting agents are needed that either act with monotherapeutic activity against HNSCC tumors or enhance the activities of current therapies, particularly immunotherapy. Small-molecule tyrosine kinase inhibitors (TKIs) represent a viable option toward this goal. AREAS COVERED This review provides an update on TKIs currently under investigation in HNSCC. We focus our review on data obtained and trials underway in HNSCC, including salivary gland cancers and nasopharyngeal carcinomas, but excluding thyroid cancer and esophageal cancer. EXPERT OPINION While some emerging TKIs have shown clinical benefit, the positive effects have, largely, been modest. The design of clinical trials of TKIs has been hampered by a lack of understanding of biomarkers that can be used to define patient populations most likely to respond. Further preclinical and translational studies to define biomarkers of TKI response will be critically important.
Collapse
Affiliation(s)
- Zhen Long
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Daniel E. Johnson
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
Jangholi A, Müller Bark J, Kenny L, Vasani S, Rao S, Dolcetti R, Punyadeera C. Exosomes at the crossroad between therapeutic targets and therapy resistance in head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188784. [PMID: 36028150 DOI: 10.1016/j.bbcan.2022.188784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive and clinically challenging tumours that require a multidisciplinary management approach. Despite significant therapy improvements, HNSCC patients have a poor prognosis with a 5-year survival rate of about 65%. As recently recognised key players in cancer, exosomes are extracellular vesicles (EVs) with a diameter of nearly 50-120 nm which transport information from one cell to another. Exosomes are actively involved in various aspects of tumour initiation, development, metastasis, immune regulation, therapy resistance, and therapeutic applications. However, current knowledge of the role of exosomes in the pathophysiological processes of HNSCC is still in its infancy, and additional studies are needed. In this review, we summarise and discuss the relevance of exosomes in mediating local immunosuppression and therapy resistance of HNSCC. We also review the most recent studies that have explored the therapeutic potential of exosomes as cancer vaccines, drug carriers or tools to reverse the drug resistance of HNSCC.
Collapse
Affiliation(s)
- Abolfazl Jangholi
- Centre for Biomedical Technologies, The School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia; The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Juliana Müller Bark
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Lizbeth Kenny
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, Australia; Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia; The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Australia; Menzies Health Institute Queensland (MIHQ), Griffith University, Gold Coast, Australia.
| |
Collapse
|
9
|
Fasano M, Perri F, Della Corte CM, Di Liello R, Della Vittoria Scarpati G, Cascella M, Ottaiano A, Ciardiello F, Solla R. Translational Insights and New Therapeutic Perspectives in Head and Neck Tumors. Biomedicines 2021; 9:1045. [PMID: 34440249 PMCID: PMC8391435 DOI: 10.3390/biomedicines9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a high mortality rate owing to very few available oncological treatments. For many years, a combination of platinum-based chemotherapy and anti-EGFR antibody cetuximab has represented the only available option for first-line therapy. Recently, immunotherapy has been presented an alternative for positive PD-L1 HNSCC. However, the oncologists' community foresees that a new therapeutic era is approaching. In fact, no-chemo options and some molecular targets are on the horizon. This narrative review addresses past, present, and future therapeutic options for HNSCC from a translational point of view.
Collapse
Affiliation(s)
- Morena Fasano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Via M. Semmola, 80131 Naples, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Raimondo Di Liello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | | | - Marco Cascella
- Division of Anesthesia, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80100 Naples, Italy;
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80100 Naples, Italy;
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.F.); (C.M.D.C.); (R.D.L.); (F.C.)
| | - Raffaele Solla
- Italian National Research Council, Institute of Biostructure & Bioimaging, 80131 Naples, Italy;
| |
Collapse
|
10
|
Fasano M, Della Corte CM, Viscardi G, Di Liello R, Paragliola F, Sparano F, Iacovino ML, Castrichino A, Doria F, Sica A, Morgillo F, Colella G, Tartaro G, Cappabianca S, Testa D, Motta G, Ciardiello F. Head and neck cancer: the role of anti-EGFR agents in the era of immunotherapy. Ther Adv Med Oncol 2021; 13:1758835920949418. [PMID: 33767760 PMCID: PMC7953226 DOI: 10.1177/1758835920949418] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
Head and neck cancers (HNC) represent the seventh most frequent cancer worldwide, with squamous cell carcinomas as the most frequent histologic subtype. Standard treatment for early stage diseases is represented by single modality surgery or radiotherapy, whereas in the locally advanced and recurrent or metastatic settings a more aggressive multi-modal approach is needed with locoregional intervention and/or systemic therapies. Epidermal Growth Factor Receptor (EGFR) plays an important role in HNC biology and has been studied extensively in preclinical and clinical settings. In this scenario, anti-EGFR targeted agent cetuximab, introduced in clinical practice a decade ago, represents the only approved targeted therapy to date, while the development of immune-checkpoint inhibitors has recently changed the available treatment options. In this review, we focus on the current role of anti-EGFR therapies in HNCs, underlying available clinical data and mechanisms of resistance, and highlight future perspectives regarding their role in the era of immunotherapy.
Collapse
Affiliation(s)
- Morena Fasano
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli. Via Sergio Pansini 5, Naples, 80131, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Viscardi
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raimondo Di Liello
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fernando Paragliola
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Sparano
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Lucia Iacovino
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesca Doria
- Centro radiologico Vega, Centro radiologico fisica e terapia fisica Morrone, Caserta, Italy
| | - Antonello Sica
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Colella
- Maxillo-Facial Surgery Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giampaolo Tartaro
- Maxillo-Facial Surgery Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, Radiology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Domenico Testa
- Department of Anesthesiology, Surgical and Emergency Science, Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetano Motta
- Department of Anesthesiology, Surgical and Emergency Science, Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
11
|
Identification of extracellular vesicles-transported miRNAs in Erlotinib-resistant head and neck squamous cell carcinoma. J Cell Commun Signal 2020; 14:389-402. [PMID: 32157550 DOI: 10.1007/s12079-020-00546-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Erlotinib is an oral tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR) pathway. Although our previous study has proved the efficacy of Erlotinib in head and neck squamous cell carcinoma (HNSCC), it has also demonstrated poor clinical response rates and disappointing results in clinical trials for HNSCC to date. In this study, we discovered elevated cell proliferation and invasion ability in erlotinib-resistant HNSCC cells. The contributions of miRNAs within extracellular vesicles (EVs) during the formation of chemoresistance were investigated in this study. Among up-regulated miRNAs in EVs derived from resistant cells, miR-7704, miR-21-5p and miR-3960 showed the most pro-tumorigenic alterations after transfection. Conversely, let-7i-5p, miR-619-5p and miR-30e-3p demonstrated tumor suppressive effects. By performing qRT-PCR and Western blot analysis, we found Vimentin played a pivotal role in modulating erlotinib resistance. Additionally, immune system was highlighted in the GO and KEGG analyses. Transfection of miR-7704, miR-21-5p significantly elevated CTLA-4 and LAG3 mRNA levels. Meanwhile, miR-3960 increased the relative mRNA expression of TIM3 in HNSCC cells. Transfection of let-7i-5p, miR-619-5p and miR-30e-3p decreased these checkpoint factors. To conclude, the present study described the roles of EVs-transmitted miRNAs on erlotinib resistance. Targeting the disregulated immune system could be the effective method to overcome erlotinib-resistance in HNSCC cells.
Collapse
|
12
|
Rutkowska A, Stoczyńska-Fidelus E, Janik K, Włodarczyk A, Rieske P. EGFR vIII: An Oncogene with Ambiguous Role. JOURNAL OF ONCOLOGY 2019; 2019:1092587. [PMID: 32089685 PMCID: PMC7024087 DOI: 10.1155/2019/1092587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor variant III (EGFRvIII) seems to constitute the perfect therapeutic target for glioblastoma (GB), as it is specifically present on up to 28-30% of GB cells. In case of other tumor types, expression and possible role of this oncogene still remain controversial. In spite of EGFRvIII mechanism of action being crucial for the design of small active anticancer molecules and immunotherapies, i.e., CAR-T technology, it is yet to be precisely defined. EGFRvIII is known to be resistant to degradation, but it is still unclear whether it heterodimerizes with EGF-activated wild-type EGFR (EGFRWT) or homodimerizes (including covalent homodimerization). Constitutive kinase activity of this mutated receptor is relatively low, and some researchers even claim that a nuclear, but not a membrane function, is crucial for its activity. Based on the analyses of recurrent tumors that are often lacking EGFRvIII expression despite its initial presence in corresponding primary foci, this oncogene is suggested to play a marginal role during later stages of carcinogenesis, while even in primary tumors EGFRvIII expression is detected only in a small percentage of tumor cells, undermining the rationality of EGFRvIII-targeting therapies. On the other hand, EGFRvIII-positive cells are resistant to apoptosis, more invasive, and characterized with enhanced proliferation rate. Moreover, expression of this oncogenic receptor was also postulated to be a marker of cancer stem cells. Opinions regarding the role that EGFRvIII plays in tumorigenesis and for tumor aggressiveness are clearly contradictory and, therefore, it is crucial not only to determine its mechanism of action, but also to unambiguously define its role at early and advanced cancer stages.
Collapse
Affiliation(s)
- Adrianna Rutkowska
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczyńska-Fidelus
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Aneta Włodarczyk
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193 Lodz, Poland
- Department of Research and Development, Personather Ltd., Milionowa 23, 93-193 Lodz, Poland
| |
Collapse
|
13
|
Liu L, Chen J, Cai X, Yao Z, Huang J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg Oncol 2019; 31:90-97. [PMID: 31550560 DOI: 10.1016/j.suronc.2019.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
With the rapid development of biomedicine, people have a deeper understanding with the biological characteristics of malignant tumors, and begin to notice that in most tumors, there are over-expression of several molecules such as epidermal growth factor receptor(EGFR), vascular endothelial growth factor (VEGF) and its receptors,mammalian target of rapamycin(mTOR),programmed cell death receptor-1(PD-1),cyclin-dependent kinases(CDKs) and so on, whose levels are closely related to the prognosis of tumors. It has been found that the drugs targeting the above molecules can significantly improve the survival rate of cancer patients, and have the advantages of high selectivity, low toxicity and high therapeutic index. Targeted drugs, as new ones in the field of cancer, have achieved good efficacy in most tumor treatments. Oral cancer is an aggressive malignant tumour that is prone to relapse and metastasis. More than 90% of them are squamous cell carcinoma, and the 5-year survival rate remains at about 50%-60%.The proposing of targeted therapy opens up a new way for the treatment of oral cancer and brings dawn to patients with advanced diseases. Currently,a variety of targeted therapeutic drugs are being tested in various clinical trials in patients with oral squamous cell carcinoma(OSCC)·In this paper, we discuss the research progress of targeted therapeutic drugs in the treatment of OSCC in recent years.
Collapse
Affiliation(s)
- Lian Liu
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Jili Chen
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Xinjia Cai
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Junhui Huang
- Department of Oral Pathology, Xiangya Stomatological Hospital, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
14
|
von der Grün J, Rödel F, Brandts C, Fokas E, Guckenberger M, Rödel C, Balermpas P. Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck Squamous Cell Carcinoma: Where Do We Stand Today and Where to Go? Cancers (Basel) 2019; 11:E472. [PMID: 30987257 PMCID: PMC6521064 DOI: 10.3390/cancers11040472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023] Open
Abstract
With an increased understanding of the tumor biology of squamous cell carcinoma of the head and neck (SCCHN), targeted therapies have found their way into the clinical treatment routines against this entity. Nevertheless, to date platinum-based cytostatic agents remain the first line choice and targeting the epidermal growth factor-receptor (EGFR) with combined cetuximab and radiation therapy remains the only targeted therapy approved in the curative setting. Investigation of immune checkpoint inhibitors (ICI), such as antibodies targeting programmed cell death protein 1 (PD-1) and its ligand PD-L1, resulted in a change of paradigms in oncology and in the first approval of new drugs for treating SCCHN. Nivolumab and pembrolizumab, two anti-PD-1 antibodies, were the first agents shown to improve overall survival for patients with metastatic/recurrent tumors in recent years. Currently, several clinical trials investigate the role of ICI in different therapeutic settings. A robust set of biomarkers will be an inevitable tool for future individualized treatment approaches including radiation dose de-escalation and escalation strategies. This review aims to summarize achieved goals, the current status and future perspectives regarding targeted therapies and ICI in the management of SCCHN.
Collapse
Affiliation(s)
- Jens von der Grün
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Franz Rödel
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Christian Brandts
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Department of Medicine, Hematology/Oncology, University Cancer Center Frankfurt (UCT), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Emmanouil Fokas
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Matthias Guckenberger
- Department of Radiation Oncology, Rämistrasse 100, University Hospital Zurich, 8091 Zürich, Switzerland.
| | - Claus Rödel
- Department of Radiation Oncology, Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site: Frankfurt a. M., Theodor-Stern-Kai 7, University of Frankfurt, 60590 Frankfurt, Germany.
| | - Panagiotis Balermpas
- Department of Radiation Oncology, Rämistrasse 100, University Hospital Zurich, 8091 Zürich, Switzerland.
| |
Collapse
|