1
|
Sabir AJ, Adams TE, O'Rourke D, Devlin JM, Noormohammadi AH. Investigation onto the correlation between systemic antibodies to surface glycoproteins of infectious laryngotracheitis virus (ILTV) and protective immunity. Vet Microbiol 2018; 228:252-258. [PMID: 30593375 DOI: 10.1016/j.vetmic.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes upper respiratory tract disease in chickens and significant losses to the poultry industry worldwide. Both antibody and cell-mediated responses are generated against ILTV infection; however, the correlation of humoral immune response with protection against ILTV infection is debatable. To examine if whether antibody responses to individual ILTV glycoproteins are correlated with disease and protection, four ILTV glycoproteins (gD, gE, gG and gJ) were expressed as recombinant proteins and used in conjunction with commercially available recombinant gC and gI in indirect ELISAs to measure post-vaccination and/or post-challenge chicken serum antibodies. Serum optical density (OD) values detected by the whole virus, gC, gI and gJ were significantly higher in birds vaccinated with the Serva vaccine strain compared to the SA2 vaccine strain. However, the mean ODs detected by gD, gE and gG were not significantly different between the vaccine strains. Examination of post-ILTV vaccination sera found that gE was the most antigenic glycoprotein and that gC ODs were strongly correlated with those of gI and gJ, while ODs to gG had a relatively poor correlation with those of other glycoproteins. Moderate to poor correlations were found between microscopic tracheal lesion scores and ODs to individual glycoproteins. Examination of post-vaccination pre-challenge antibodies to individual glycoproteins did not find a strong correlation with protective immunity as measured by the severity of clinical signs, gross lesions, and tracheal viral load. Results from this study demonstrated that systemic antibody titers to individual ILTV glycoproteins C, D, E, G, I and J had a relatively poor correlation to protective immunity.
Collapse
Affiliation(s)
- Ahmad J Sabir
- Asia Pacific Centre for Animal Health, The University of Melbourne, Werribee, VIC, 3030, Australia.
| | - Timothy E Adams
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC, 3010, Australia
| | - Denise O'Rourke
- Asia Pacific Centre for Animal Health, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC,3010, Australia
| | - Amir H Noormohammadi
- Asia Pacific Centre for Animal Health, The University of Melbourne, Werribee, VIC, 3030, Australia
| |
Collapse
|
2
|
Korsa MG, Devlin JM, Hartley CA, Browning GF, Coppo MJC, Quinteros JA, Loncoman CA, Onasanya AE, Thilakarathne D, Diaz-Méndez A. Determination of the minimum protective dose of a glycoprotein-G-deficient infectious laryngotracheitis virus vaccine delivered via eye-drop to week-old chickens. PLoS One 2018; 13:e0207611. [PMID: 30521554 PMCID: PMC6283630 DOI: 10.1371/journal.pone.0207611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an upper respiratory tract disease of chickens that is caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. This disease causes significant economic loses in poultry industries worldwide. Despite widespread use of commercial live attenuated vaccines, many poultry industries continue to experience outbreaks of disease caused by ILTV. Efforts to improve the control of this disease have resulted in the generation of new vaccine candidates, including ILTV mutants deficient in virulence factors. A glycoprotein G deletion mutant vaccine strain of ILTV (ΔgG ILTV), recently licenced as Vaxsafe ILT (Bioproperties Pty Ltd), has been extensively characterised in vitro and in vivo, but the minimum effective dose required to protect inoculated animals has not been determined. This study performed a vaccination and challenge experiment to determine the minimum dose of ΔgG ILTV that, when delivered by eye-drop to seven-day-old specific pathogen-free chickens, would protect the birds from a robust challenge with a virulent field strain of virus (class 9 ILTV). A dose of 10(3.8) plaque forming units was the lowest dose capable of providing a high level of protection against challenge, as measured by clinical signs of disease, tracheal pathology and virus replication after challenge. This study has shown that the ΔgG ILTV vaccine strain is capable of inducing a high level of protection against a virulent field virus at a commercially feasible dose. These results lay the foundations upon which a commercial vaccine can be developed, thereby offering the potential to provide producers with another important tool to help control ILTV.
Collapse
Affiliation(s)
- Mesula G. Korsa
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - José A. Quinteros
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Carlos A. Loncoman
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Adepeju E. Onasanya
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dulari Thilakarathne
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
3
|
Shil NK, Legione AR, Markham PF, Noormohammadi AH, Devlin JM. Development and Validation of TaqMan Real-Time Polymerase Chain Reaction Assays for the Quantitative and Differential Detection of Wild-Type Infectious Laryngotracheitis Viruses from a Glycoprotein G–Deficient Candidate Vaccine Strain. Avian Dis 2015; 59:7-13. [DOI: 10.1637/10810-030414-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Glycoprotein-based enzyme-linked immunosorbent assays for serodiagnosis of infectious laryngotracheitis. J Clin Microbiol 2015; 53:1727-30. [PMID: 25694519 DOI: 10.1128/jcm.02540-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with vectored vaccine, using recombinant Newcastle disease virus (rNDV) expressing glycoprotein D (gD) as the vaccine vector.
Collapse
|
5
|
Coppo MJC, Hartley CA, Devlin JM. Immune responses to infectious laryngotracheitis virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:454-462. [PMID: 23567343 DOI: 10.1016/j.dci.2013.03.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Infectious laryngotracheitis (ILT) is an upper respiratory tract disease in chickens caused by infectious laryngotracheitis virus (ILTV), an alphaherpesvirus. Despite the extensive use of attenuated, and more recently recombinant, vaccines for the control of this disease, ILT continues to affect the intensive poultry industries worldwide. Innate and cell-mediated, rather than humoral immune responses, have been identified as responsible for protection against disease. This review examines the current understandings in innate and adaptive immune responses towards ILTV, as well as the role of ILTV glycoprotein G in modulating the host immune response towards infection. Protective immunity induced by ILT vaccines is also examined. The increasing availability of tools and reagents for the characterisation of avian innate and cell-mediated immune responses are expected to further our understanding of immunity against ILTV and drive the development of new generation vaccines towards enhanced control of this disease.
Collapse
Affiliation(s)
- Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
6
|
Pavlova S, Veits J, Mettenleiter TC, Fuchs W. Identification and functional analysis of membrane proteins gD, gE, gI, and pUS9 of Infectious laryngotracheitis virus. Avian Dis 2013; 57:416-26. [PMID: 23901755 DOI: 10.1637/10332-082612-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herpesvirus envelope proteins are of particular interest for development of attenuated live, marker, and subunit vaccines, as well as development of diagnostic tools. The unique short genome region of the chicken pathogen infectious laryngotracheitis virus (ILTV, Gallid herpesvirus 1) contains a cluster of six conserved alphaherpesvirus genes encoding membrane proteins, of which up to now only glycoproteins gG and gJ have been analyzed in detail. We have now prepared monospecific rabbit antisera against ILTV gD, gE, and gI, and the ILTV type II membrane protein pUS9, each of which showed specific immunofluorescence reactions, and detected proteins of approximately 65 and 70 kDa (gD), 62 kDa (gI), 75 kDa (gE), or 37 kDa (pUS9) in western blot analyses of infected chicken cells. The proteins gD, gI, and gE, but not pUS9, were identified as abundant virion proteins, and gE and gI were shown to be N-glycosylated. We also isolated gE-, gI-, and pUS9-deleted ILTV recombinants, whereas it was not possible to purify gD-negative ILTV to homogeneity, indicating that gD, like in other alphaherpesviruses, is essential for receptor binding and virus entry. The pUS9-deleted ILTV exhibited almost wild-type-like replication properties in cell culture. The gE- and gI-negative viruses showed significantly reduced plaque sizes, whereas virus titers were barely affected. Since homologous gene-deletion mutants of other alphaherpesviruses are in use as live vaccines, the generated ILTV recombinants might be also suitable for this application.
Collapse
Affiliation(s)
- Sophia Pavlova
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
7
|
Coppo MJC, Noormohammadi AH, Browning GF, Devlin JM. Challenges and recent advancements in infectious laryngotracheitis virus vaccines. Avian Pathol 2013; 42:195-205. [DOI: 10.1080/03079457.2013.800634] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|