1
|
Spackman E, Stephens CB, Pusch EA. Duration of Highly Pathogenic Avian Influenza Virus and Newcastle Disease Virus Infectivity in Dried Ornithologic Study Skins. J Wildl Dis 2024; 60:774-778. [PMID: 38717893 DOI: 10.7589/jwd-d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/19/2024] [Indexed: 07/09/2024]
Abstract
Ornithologic study skins are specimens of avian skins that have been preserved by drying after removing the viscera and muscle. Because of the high value of study skins for scientific studies, specimens are shared among researchers. There is concern that study skins might be contaminated with high-consequence diseases such as highly pathogenic avian influenza virus (HPAIV) or Newcastle disease virus (NDV). To mitigate risk, thermal or chemical treatment of study skins may be required before transfer; however, such treatments might damage the specimens. Therefore, a study was conducted to evaluate the duration of infectivity of HPAIV and NDV in study skins prepared from infected chickens (Gallus gallus). Study skins were prepared from 10 chickens infected with each virus. Skin and feather pulp samples were taken at the time of study skin preparation to establish starting titers. Mean starting titers in the skin was 4.2 log10 and 5.1 log10 50% egg infectious doses (EID50) for HPAIV and NDV groups respectively, and were 6.7 log10 EID50 for HPAIV, and 6.4 log10 EID50 for NDV in feather pulp. Samples were collected at 2 and 4 wk of drying to quantify viable virus. At 2 wk, fewer samples had detectable virus and mean titers were 1.8 log10 (skin) and 2.1 log10 (feathers) EID50 for HPAIV, and 1.7 log10 (skin) and 3.5 log10 (feathers) EID50 for NDV. At 4 wk viable virus could not be detected in either tissue type.
Collapse
Affiliation(s)
- Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Road, Athens, Georgia 30605, USA
| | - Christopher B Stephens
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Road, Athens, Georgia 30605, USA
- Current affiliation: Boehringer-Ingelheim Animal Health USA, 1730 Olympic Drive, Athens, Georgia 30601, USA
| | - Elizabeth A Pusch
- Exotic and Emerging Avian Viral Diseases Unit, US National Poultry Research Center, USDA-Agricultural Research Service, 934 College Station Road, Athens, Georgia 30605, USA
- Current affiliation: Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|
2
|
Lyu F, Zhao YH, Lu Y, Zuo XX, Deng BH, Zeng MQ, Wang JN, Olaniran A, Hou J, Khoza T. Vacuum Foam Drying Method Improved the Thermal Stability and Long-Term Shelf Life of a Live Attenuated Newcastle Disease Virus Vaccine. AAPS PharmSciTech 2022; 23:291. [DOI: 10.1208/s12249-022-02440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
|
3
|
Abozaid KGA, Abdel-Moneim AS. Epidemiological surveillance of Newcastle disease virus in Egypt - a 6-year cohort study. Trop Anim Health Prod 2022; 54:243. [PMID: 35909216 DOI: 10.1007/s11250-022-03234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Newcastle disease (ND) is one of the most important poultry diseases worldwide and can lead to annual losses of up to 80% of backyard chickens in Africa. A retrospective cohort of 6 years was planned to screen the NDV in intensive chicken and turkey flocks. The existence of velogenic NDV strain was screened in different poultry flocks showing suspected signs of NDV using real-time RT-PCR targeting the F gene of the velogenic strain. A total of 843 poultry flocks were screened during the cohort. Samples were classified based on the month and year as well as the poultry type. All flocks should be negative for avian influenza virus as an inclusion criterion of the study. The F gene of a randomly selected positive sample from each year as well as an archival sample from 2005 was sequenced. An overall of 52.4% (443/842) of the tested farms showed positive results for the velogenic NDV. The cumulative percentage of positive flocks to the total positive flocks per month ranged from 5.9 to 11.8%. The results revealed that NDV is circulating across all months annually without evidence of seasonal tendency of the disease. Most of the strains belong to genotype VII.1.1, with only two strains related to XXI.1.1 and XXI.2. All VII.1.1 strains possess arginine at 27 position while XXI.1.1 and XXI.2 strains showed cysteine at 27 and amino acid substitutions in the signal peptide, cleavage site, and neutralizing epitopes. In conclusion, the current molecular epidemiological surveillance confirms the enzootic nature of NDV. It circulates all year round with no evidence of seasonal incidence. Genotype VII is the most predominant NDV genotype in Egypt.
Collapse
Affiliation(s)
- Khaled G A Abozaid
- Institute of Animal Health, Fayoum, 63511, Egypt.,Department of Poultry Disease, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed S Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Taif, 21944, Saudi Arabia.
| |
Collapse
|
4
|
Guktur RE, Nep EI, Kemas CU, Olorunfemi PO, Ngwuluka NC, Ochekpe NA, Sagay AS. Effects of Autoclaving and Freeze-Drying on Physicochemical Properties of Plectranthus esculentus Starch Derivatives. AAPS PharmSciTech 2022; 23:172. [PMID: 35739364 DOI: 10.1208/s12249-022-02300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
The goal of this research was to assess the effects of autoclaving followed by freeze-drying on acetylated xerogel (AXS) and carboxymethylated (CMS) derivatives of Plectranthus esculentus starch as potential vaccine stabilizers. Starch extracted from tubers of P. esculentus were modified by single (carboxymethylation) and dual (acetylation followed by xerogel formation) methods. The derivatives were formulated into vaccine stabilizer suspensions, autoclaved, and freeze-dried without additives or antigen. The derivatives and freeze-dried products were assessed by physical appearance, titration, moisture content (MC), TGA, DSC, XRD, SEM, and FTIR analyses. The degrees of substitution (DS) of the CMS and AXS derivatives were 0.345 and 0.033, respectively. Modification significantly reduced the MC of the derivatives. Freeze-dried AXS (FAXS) had lower MC than freeze-dried CMS (FCMS). The lower degree of hydrophilicity/MC of AXS and FAXS was confirmed by TGA and FTIR band intensities and shifts. Reduction in DSC water desorption/evaporation enthalpies (ΔH) from - 1168.8 mJ (NaS) to - 407.48 mJ (AXS) confirmed the influence of modification on moisture. FTIR confirmed acetylation and carboxymethylation of the derivatives by the presence of 1702.9 cm-1 and 1593 cm-1 bands, respectively (FTIR). Increasing concentrations of the derivatives yielded uncollapsed/unshrunken lyophilisates. SEM and XRD showed that modification, autoclaving, and freeze-drying yielded beehive-like microstructures of FCMS and FAXS that were completely amorphous. Processing (autoclaving and freeze-drying), therefore, enhanced the amorphousness of the starch derivatives which is required in vaccine stability during processing and storage. These findings indicate that these starch derivatives have potential as novel vaccine stabilizers.
Collapse
Affiliation(s)
- Ruth E Guktur
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria.,Viral Vaccines Production Division, National Veterinary Research Institute, PMB 01, Vom, Nigeria
| | - Elijah I Nep
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Chinwe U Kemas
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Patrick O Olorunfemi
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Ndidi C Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria
| | - Nelson A Ochekpe
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos, Nigeria.
| | - Atiene S Sagay
- Department of Obstetrics and Gynaecology, College of Health Sciences, University of Jos/Jos University Teaching Hospital, Jos, Nigeria
| |
Collapse
|
5
|
Intranasal vaccination of hamsters with a Newcastle disease virus vector expressing the S1 subunit protects animals against SARS-CoV-2 disease. Sci Rep 2022; 12:10359. [PMID: 35725862 PMCID: PMC9208357 DOI: 10.1038/s41598-022-13560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has already claimed millions of lives and remains one of the major catastrophes in the recorded history. While mitigation and control strategies provide short term solutions, vaccines play critical roles in long term control of the disease. Recent emergence of potentially vaccine-resistant and novel variants necessitated testing and deployment of novel technologies that are safe, effective, stable, easy to administer, and inexpensive to produce. Here we developed three recombinant Newcastle disease virus (rNDV) vectored vaccines and assessed their immunogenicity, safety, and protective efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice and hamsters. Intranasal administration of rNDV-based vaccine candidates elicited high levels of neutralizing antibodies. Importantly, the nasally administrated vaccine prevented lung damage, and significantly reduced viral load in the respiratory tract of vaccinated animal which was compounded by profound humoral immune responses. Taken together, the presented NDV-based vaccine candidates fully protected animals against SARS-CoV-2 challenge and warrants evaluation in a Phase I human clinical trial as a promising tool in the fight against COVID-19.
Collapse
|
6
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
7
|
Osman N, Goovaerts D, Sultan S, Salt J, Grund C. Vaccine Quality Is a Key Factor to Determine Thermal Stability of Commercial Newcastle Disease (ND)Vaccines. Vaccines (Basel) 2021; 9:vaccines9040363. [PMID: 33918608 PMCID: PMC8069011 DOI: 10.3390/vaccines9040363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/18/2023] Open
Abstract
Vaccination against Newcastle disease (ND), a devastating viral disease of chickens, is often hampered by thermal inactivation of the live vaccines, in particular in tropical and hot climate conditions. In the past, “thermostable” vaccine strains (I-2) were proposed to overcome this problem but previous comparative studies did not include formulation-specific factors of commercial vaccines. In the current study, we aimed to verify the superior thermal stability of commercially formulated I-2 strains by comparing six commercially available ND vaccines. Subjected to 37 °C as lyophilized preparations, two vaccines containing I-2 strains were more sensitive to inactivation than a third I-2 vaccine or compared to three other vaccines based on different ND strains. However, reconstitution strains proved to have a comparable tenacity. Interestingly, all vaccines still retained a sufficient virus dose for protection (106 EID50) after 1 day at 37 °C. These results suggest that there are specific factors that influence thermal stability beyond the strain-specific characteristics. Exposing ND vaccines to elevated temperatures of 51 and 61 °C demonstrated that inactivation of all dissolved vaccines including I-2 vaccine strains occurred within 2 to 4 h. The results revealed important differences among the vaccines and emphasize the importance of the quality of a certain vaccine preparation rather than the strain it contains. These data highlight that regardless of the ND strain used for vaccine preparation, the appropriate cold chain is mandatory for keeping live ND vaccines efficiency in hot climates.
Collapse
Affiliation(s)
- Nabila Osman
- Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | - Danny Goovaerts
- DGVAC Consulting, 2460 Antwerp, Belgium;
- GALVmed, Edinburgh EH26 0PZ, UK;
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt;
| | | | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Edinburgh EH26 0PZ, UK
- Correspondence:
| |
Collapse
|
8
|
Saganuwan SA. Application of median lethal concentration (LC 50) of pathogenic microorganisms and their antigens in vaccine development. BMC Res Notes 2020; 13:289. [PMID: 32539814 PMCID: PMC7294769 DOI: 10.1186/s13104-020-05126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Lack of ideal mathematical models to qualify and quantify both pathogenicity, and virulence is a dreadful setback in development of new antimicrobials and vaccines against resistance pathogenic microorganisms. Hence, the modified arithmetical formula of Reed and Muench has been integrated with other formulas and used to determine bacterial colony forming unit/viral concentration, virulence and immunogenicity. RESULTS Microorganisms' antigens tested are Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa in mice and rat, Edwardsiella ictaluri, Aeromonas hydrophila, Aeromonas veronii in fish, New Castle Disease virus in chicken, Sheep Pox virus, Foot-and-Mouth Disease virus and Hepatitis A virus in vitro, respectively. The LC50s for the pathogens using different routes of administrations are 1.93 × 103(sheep poxvirus) and 1.75 × 1010 for Staphylococcus aureus (ATCC29213) in rat, respectively. Titer index (TI) equals N log10 LC50 and provides protection against lethal dose in graded fashion which translates to protection index. N is the number of vaccine dose that could neutralize the LC50. Hence, parasite inoculum of 103 to 1011 may be used as basis for determination of LC50 and median bacterial concentrations (BC50).Pathogenic dose for immune stimulation should be sought at concentration about LC10.
Collapse
Affiliation(s)
- Saganuwan Alhaji Saganuwan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, P.M.B. 2373, Makurdi, Benue, Nigeria.
| |
Collapse
|
9
|
Liu T, Song Y, Yang Y, Bu Y, Cheng J, Zhang G, Xue J. Hemagglutinin-Neuraminidase and fusion genes are determinants of NDV thermostability. Vet Microbiol 2018; 228:53-60. [PMID: 30593380 DOI: 10.1016/j.vetmic.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
Abstract
Newcastle disease (ND) caused by infections with virulent strains of Newcastle disease virus (NDV) continues to be a threat for poultry industry worldwide. The prospect of developing a thermostable and effective NDV vaccine is still highly desirable. To investigate the determinants of thermostability in NDV, we generated recombinant NDV strains by exchanging viral hemagglutinin-neuraminidase (HN) gene or by mutating the fusion (F) gene. The results showed that the HN and F protein were both determinants of NDV thermostability. With increased thermostability, the HN protein-chimeric virus showed significantly reduced neuraminidase and hemadsorption activities, but its hemolytic activity was retained. We also found that changing the amino acid in the F protein cleavage sites, affected the thermostability as well as the pathogenicity and fusogenic capacity of the virus. Taken together, our results suggest that HN and F proteins both contribute to the thermostability of NDV, and other viral biological activities change as the thermostability of the virus changes. These findings should be of benefit to the development of a thermostable and efficacious NDV vaccine.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yanling Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yawen Bu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinlong Cheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|