1
|
Hou L, Jia J, Qin X, Fang M, Liang S, Deng J, Pan B, Zhang X, Wang B, Mao C, Cheng L, Zhang J, Wang C, Ming X, Qin T. Prevalence and genotypes of Chlamydia psittaci in birds and related workers in three cities of China. PLoS One 2024; 19:e0308532. [PMID: 39116068 PMCID: PMC11309507 DOI: 10.1371/journal.pone.0308532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Chlamydia psittaci-a zoonotic pathogen in birds-may be transmitted to humans, causing severe respiratory disease. Individuals working in or living near poultry farms are highly susceptible to C. psittaci infection. In this study, we assessed the prevalence and genotypes of C. psittaci in poultries and humans in three cities of China by collecting fecal samples from different poultry species and throat swab samples and serum samples from workers in poultry farms and zoos. These samples were screened by real-time fluorescence quantitative PCR (qPCR) targeting C. psittaci ompA. The positive samples were subjected to PCR amplification and sequencing of ompA. The strains detected in the samples were genotyped on the basis of the phylogenetic analysis of ompA sequences. In total, 3.13% (40/1278) poultry fecal samples were positive in the qPCR assay, whereas 3.82% (6/157) of throat swab samples and 42.59% (46/108) of serum samples from the workers were positive in the qPCR and indirect fluorescent antibody assays, respectively. The strains detected in the 32 poultry samples and 6 human samples were genotyped as type A, indicating that the workers were infected with C. psittaci that originated in poultry birds in farms. Additionally, eight peacocks showed strains with the genotype CPX0308, which was identified in China for the first time. Elucidating the distribution of C. psittaci in animals and poultry-related workers may provide valuable insights for reducing the risk of C. psittaci infection within a population.
Collapse
Affiliation(s)
- Ling Hou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Jia
- Qingdao Municipal Centre of Disease Control and Prevention, Qingdao, Shandong, China
| | - Xincheng Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Fang
- Shandong Center for Disease Control and Prevention, Jinan, Shandon, China
| | - Shengnan Liang
- Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong, China
| | - Jianping Deng
- Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong, China
| | - Bei Pan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, China
| | - Xiangyuan Zhang
- Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong, China
| | - Bin Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, China
| | - Conglin Mao
- Jiaozhou City Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Lihong Cheng
- Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong, China
| | - Jie Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, China
| | - Chunhui Wang
- Shibei District Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Xuewei Ming
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Tripinichgul S, Weerakhun S, Kanistanon K. Prevalence and Risk Factors of Avian Chlamydiosis Detected by Polymerase Chain Reaction in Psittacine Birds in Thailand. J Avian Med Surg 2023; 36:372-379. [PMID: 36935208 DOI: 10.1647/21-00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study surveyed avian chlamydiosis, with the aim to estimate the prevalence and potential risk factors associated with Chlamydia psittaci infection in psittacine birds kept as domestic pets in Thailand. Oropharyngeal swabs were collected from 120 psittacine birds that were randomly selected from hospitals in the central (Bangkok) and northeastern regions (Khon Kaen) of Thailand between 2019 and 2021. The oropharyngeal swabs were subject to polymerase chain reaction testing to detect the C psittaci ompA gene. The prevalence of C psittaci was 2.5% (3/ 120, 95% confidence interval = 0.3-5.3). Of the 3 positive birds, 1 was a Forpus parrot (Forpus species)(CP43TH) and 1 was an African grey parrot (Psittacus erithacus)(CP49TH) from Bangkok; both were juvenile birds with clinical signs of disease. The third positive bird (CP12TH) was a subclinical adult sun conure (Aratinga solstitialis) from Khon Kaen. Two sequences of samples that were previously identified in human psittacosis cases (accession numbers MK032053.1 and HM450409.1) were also examined. Since there was a low number of infected birds, potential associations between C psittaci infection and various environmental variables (eg, cage cleaning, synanthropic birds, quarantine of new birds, and overcrowding) were assessed by Fisher exact tests. This study provides estimates of the prevalence and potential risk factors associated with C psittaci infection in psittacine birds from central (Bangkok) and the northeastern regions (Khon Kaen) of Thailand. The detection of C psittaci in captive psittacine birds demonstrates that there is a possibility for bird-to-bird transmission as well as some zoonotic potential for the human caretakers of these birds. Furthermore, larger-scale studies should be conducted to confirm these findings.
Collapse
Affiliation(s)
| | - Sompoth Weerakhun
- Department of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kwankate Kanistanon
- Department of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Tim-3 blockade enhances the clearance of Chlamydia psittaci in the lung by promoting a cell-mediated immune response. Int Immunopharmacol 2023; 116:109780. [PMID: 36720194 DOI: 10.1016/j.intimp.2023.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Chlamydia psittaci is remarkable at disrupting immunity and thus poses a great risk to the animal industry and public health. Immune inhibitory molecule upregulation and the accumulation of specialized cells play key roles in chlamydial clearance. It is clear that the T-cell immunoglobulin and mucin domain protein 3 receptor (Tim-3) can regulate effector T cells in infectious disease. However, the immunomodulatory effect of Tim-3 in C. psittaci infection remains unknown. Thus, the expression of Tim-3 in effector T cells and its immune regulatory function during C. psittaci infection were investigated. The level of Tim-3 on CD4+ and CD8+ T cells was meaningfully higher in C. psittaci-infected mice. Blockade of Tim-3 signaling by anti-Tim-3 antibody showed accelerated C. psittaci clearance and less pathological changes in the lung than isotype immunoglobulin treatment. Furthermore, treatment with anti-Tim-3 antibody greatly enhanced the levels of IFN-γ and interleukin (IL)-22/IL-17, which were correlated with an improved Th1- and Th17-mediated immune response, and decreased IL-10, which were related with a decreased Treg immune response. In conclusion, Tim-3 expression in effector T cells negatively regulates Th1 and Th17 immune responses against C. psittaci respiratory infection.
Collapse
|
4
|
He Z, Wang C, Wang J, Zheng K, Ding N, Yu M, Li W, Tang Y, Li Y, Xiao J, Liang M, Wu Y. Chlamydia psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor expression. Int J Med Microbiol 2022; 312:151571. [PMID: 36511277 DOI: 10.1016/j.ijmm.2022.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study tested the hypothesis that Chlamydia psittaci (C. psittaci) survives and multiplies in human neutrophils by activating P2X7, a nonselective cationic channel receptor expressed constitutively on the surface of these cells. Findings illustrated that P2X7 receptor expression was enhanced in C. psittaci-infected neutrophils. C. psittaci was able to inhibite spontaneous apoptosis of neutrophils through mitochondrial-induced ATP release and IL-8 production. Importantly, inhibiting ATP activation of the P2X7 receptor with AZ10606120 promotes apoptosis, while stimulating P2X7 receptor expression with BzATP delayed spontaneous apoptosis of human neutrophils, suggesting that C. psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor. This study reveals new insights into the survival advantages of the latent persistent state of C. psittaci and the mechanism by which it evades the innate immune response.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mingxing Liang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
5
|
He Z, Xiao J, Wang J, Lu S, Zheng K, Yu M, Liu J, Wang C, Ding N, Liang M, Wu Y. The Chlamydia psittaci Inclusion Membrane Protein 0556 Inhibits Human Neutrophils Apoptosis Through PI3K/AKT and NF-κB Signaling Pathways. Front Immunol 2021; 12:694573. [PMID: 34484191 PMCID: PMC8414580 DOI: 10.3389/fimmu.2021.694573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023] Open
Abstract
Inclusion membrane proteins (Incs) play an important role in the structure and stability of chlamydial inclusion and the interaction between Chlamydia spp. and their hosts. Following Chlamydia infection through the respiratory tract, human polymorphonuclear neutrophils (hPMN) not only act as the primary immune cells reaching the lungs, but also serve as reservoir for Chlamydia. We have previously identified a Chlamydia psittaci hypothetical protein, CPSIT_0556, as a medium expressed inclusion membrane protein. However, the role of inclusion membrane protein, CPSIT_0556 in regulating hPMN functions remains unknown. In the present study, we found that CPSIT_0556 could not only inhibit hPMN apoptosis through the PI3K/Akt and NF-κB signaling pathways by releasing IL-8, but also delays procaspase-3 processing and inhibits caspase-3 activity in hPMN. Up-regulating the expression of anti-apoptotic protein Mcl-1 and down-regulating the expression of pro-apoptotic protein Bax could also inhibit the translocalization of Bax in the cytoplasm into the mitochondria, as well as induce the transfer of p65 NF-κB from the cytoplasm to the nucleus. Overall, our findings demonstrate that CPSIT_0556 could inhibit hPMN apoptosis through PI3K/Akt and NF-κB pathways and provide new insights towards understanding a better understanding of the molecular pathogenesis and immune escape mechanisms of C. psittaci.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jie Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Mingxing Liang
- Department of Clinical Laboratory, The Affiliated Huaihua Hospital of University of South China, Huaihua, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
6
|
Chen Q, Li Y, Yan X, Sun Z, Wang C, Liu S, Xiao J, Lu C, Wu Y. Chlamydia psittaci Plasmid-Encoded CPSIT_P7 Elicits Inflammatory Response in Human Monocytes via TLR4/Mal/MyD88/NF-κB Signaling Pathway. Front Microbiol 2020; 11:578009. [PMID: 33343522 PMCID: PMC7744487 DOI: 10.3389/fmicb.2020.578009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/29/2020] [Indexed: 01/27/2023] Open
Abstract
The chlamydial plasmid, an essential virulence factor, encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. However, the virulence factors and the molecular mechanisms of Chlamydia psittaci are not well understood. In the present study, we investigated the roles and mechanisms of the plasmid-encoded protein CPSIT_P7 of C. psittaci in regulating the inflammatory response in THP-1 cells (human monocytic leukemia cell line). Based on cytokine arrays, CPSIT_P7 induces the expression of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1) in THP-1 cells. Moreover, the expression levels of IL-6, IL-8, and MCP-1 stimulated by CPSIT_P7 declined after silencing of the Toll-like receptor 4 (TLR4) gene using small interfering RNA and transfection of a dominant negative plasmid encoding TLR4 (pZERO-hTLR4). We further demonstrated that transfection with the dominant negative plasmid encoding MyD88 (pDeNy-hMyD88) and the dominant negative plasmid encoding Mal (pDeNy-hMal) could also abrogate the expression of the corresponding proteins. Western blot and immunofluorescence assay results showed that CPSIT_P7 could activate nuclear factor κB (NF-κB) signaling pathways in THP-1 cells. Altogether, our results indicate that the CPSIT_P7 induces the TLR4/Mal/MyD88/NF-κB signaling axis and therefore contributes to the inflammatory cytokine response.
Collapse
Affiliation(s)
- Qian Chen
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Institute of Clinical Research, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yumeng Li
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiaoliang Yan
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhenjie Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chuan Wang
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jian Xiao
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chunxue Lu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
7
|
Wang C, Li Y, Wang S, Yan X, Xiao J, Chen Y, Zheng K, Tan Y, Yu J, Lu C, Wu Y. Evaluation of a tandem Chlamydia psittaci Pgp3 multiepitope peptide vaccine against a pulmonary chlamydial challenge in mice. Microb Pathog 2020; 147:104256. [PMID: 32416138 DOI: 10.1016/j.micpath.2020.104256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Chlamydia psittaci is the pathogen of psittacosis, and it has emerged as a significant public health threat. Because most infections are easily overlooked, a vaccine is recognized as the best solution to control the spread of C. psittaci. Our previous study showed that Pgp3 protein is efficacious as a subunit vaccine while not the best candidate due to the negative effects. Thus, in this study, we tested the ability of a tandem epitope vaccine candidate designated SP based on Pgp3-dominant epitopes to induce protective immunity against pulmonary chlamydial infection. BALB/c mice were intraperitoneally inoculated with multiepitope peptide antigens followed by intranasal infection with C. psittaci. We found that the multiepitope peptide antigens induced strong humoral and cellular immune responses with high Th1-related (IFN-γ and IL-2) and proinflammatory (IL-6) cytokine levels. Meanwhile, the pathogen burden and inflammatory infiltration were significantly reduced in lungs of SP-immunized mice after chlamydial challenge. In addition, the IFN-γ and IL-6 secretion levels in the infected lungs were substantially reduced. Overall, our findings demonstrate that the peptide vaccine SP plays a significant role with good immunogenicity and protective efficacy against C. psittaci lung infection in BALB/c mice, providing important insights towards understanding the potential of peptide vaccines as new vaccine antigens for inducing protective immunity against chlamydial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Shuzhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Jian Xiao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
8
|
Detection of Chlamydia psittaci and Chlamydia ibidis in the Endangered Crested Ibis ( Nipponia nippon). Epidemiol Infect 2020; 148:e1. [PMID: 31910921 PMCID: PMC7019082 DOI: 10.1017/s0950268819002231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chlamydia spp. are a group of obligate intracellular pathogens causing a number of diseases in animals and humans. Avian chlamydiosis (AC), caused by Chlamydia psittaci (C. psittaci) as well as new emerging C. avium, C. gallinacea and C. ibidis, have been described in nearly 500 avian species worldwidely. The Crested Ibis (Nipponia nippon) is a world endangered avian species with limited population and vulnerable for various infections. To get a better understanding of the prevalence of Chlamydia spp. in the endangered Crested Ibis, faecal samples were collected and analysed. The results confirmed that 20.20% (20/99) of the faecal samples were positive for Chlamydiaceae and were identified as C. ibidis with co-existence of C. psittaci in one of the 20 positive samples. In addition, ompA sequence of C. psittaci obtained in this study was classified into the provisional genotype Matt116, while that of C. ibidis showed high genetic diversity, sharing only 77% identity with C. ibidis reference strain 10-1398/6. We report for the first time the presence of C. ibidis and C. psittaci in the Crested Ibis, which may indicate a potential threat to the endangered birds and should be aware of the future protection practice.
Collapse
|