1
|
He L, Spatz S, Dunn JR, Yu Q. Newcastle disease virus (NDV) recombinant expressing Marek's disease virus (MDV) glycoprotein B significantly protects chickens against MDV and NDV challenges. Vaccine 2023; 41:5884-5891. [PMID: 37598026 DOI: 10.1016/j.vaccine.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Marek's disease (MD) is a highly contagious viral neoplastic disease of chickens caused by Marek's disease virus (MDV), resulting in significant economic losses to the poultry industry worldwide. The commonly used live and/or vectored MDV vaccines are expensive to produce and difficult to handle due to the requirement of liquid nitrogen for manufacturing and delivering frozen infected cells that are viable. In this study, we aimed to develop a Newcastle disease virus (NDV) vectored MDV vaccine that can be lyophilized, stored, and transported at 4 °C. Four NDV LaSota (LS) vaccine strain-based recombinant viruses expressing MDV glycoproteins gB, gC, gE, or gI were generated using reverse genetics technology. The biological assessments showed that these recombinant viruses were slightly attenuated in vivo yet retained similar growth kinetics and virus titers in vitro compared to the parental LaSota virus. Vaccination of leghorn chickens (Lines 15I5x71 F1 cross) with these recombinant viruses via intranasal and intraocular routes conferred different levels of protection against virulent MDV challenge. The recombinant expressing the MDV gB protein, rLS/MDV-gB, protected vaccinated birds significantly against MDV-induced tumor formation when challenged at 14 days post-vaccination (DPV) but moderately at 5 DPV. Whereas the other three recombinants provided little protection against the MDV challenge. All four recombinants conferred complete protection against the velogenic NDV challenge. These results demonstrated that the rLS/MDV-gB virus is a safe and efficacious dual vaccine candidate that can be lyophilized and potentially mass-administered via aerosol or drinking water to large chicken populations at a meager cost.
Collapse
Affiliation(s)
- Lei He
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province 471003, China
| | - Stephen Spatz
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - John R Dunn
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Qingzhong Yu
- US National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
2
|
Mariatulqabtiah AR, Nor Majid N, Giotis ES, Omar AR, Skinner MA. Inoculation of fowlpox viruses coexpressing avian influenza H5 and chicken IL-15 cytokine gene stimulates diverse host immune responses. ACTA ACUST UNITED AC 2019. [DOI: 10.35118/apjmbb.2019.027.1.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fowlpox virus (FWPV) has been used as a recombinant vaccine vector to express antigens from several important avian pathogens. Attempts have been made to improve vaccine strains induced-host immune responses by coexpressing cytokines. This study describes the construction of recombinant FWPV (rFWPV) strain FP9 and immunological responses in specific-pathogen-free (SPF) chickens, co-expressing avian influenza virus (AIV) H5 of A/Chicken/Malaysia/5858/2004, and chicken IL-15 cytokine genes. Expression of H5 (50 kD) was confirmed by western blotting. Anti-H5 antibodies, which were measured by the haemagglutinin inhibition test, were at the highest levels at Week 3 post-inoculation in both rFWPV/H5- and rFWPV/H5/IL-15-vaccinated chickens, but decreased to undetectable levels from Week 5 onwards. CD3+/CD4+ or CD3+/CD8+T cell populations, assessed using flow cytometry, were significantly increased in both WT FP9- and rFWPV/H5-vaccinated chickens and were also higher than in rFWPV/H5/IL-15- vaccinated chickens, at Week 2. Gene expression analysis using real time quantitative polymerase chain reaction (qPCR) demonstrated upregulation of IL-15 expression in all vaccinated groups with rFWPV/H5/IL-15 having the highest fold change, at day 2 (117±51.53). Despite showing upregulation, fold change values of the IL-18 expression were below 1.00 for all vaccinated groups at day 2, 4 and 6. This study shows successful construction of rFWPV/H5 co-expressing IL-15, with modified immunogenicity upon inoculation into SPF chickens.
Collapse
Affiliation(s)
- Abdul Razak Mariatulqabtiah
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadzreeq Nor Majid
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Efstathios S. Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG United Kingdom
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Michael A. Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG United Kingdom
| |
Collapse
|
3
|
Marek's disease vaccines: Current status, and strategies for improvement and development of vector vaccines. Vet Microbiol 2016; 206:113-120. [PMID: 28038868 DOI: 10.1016/j.vetmic.2016.11.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 11/24/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative viral disease of chickens, which has been controlled through vaccination since 1969. MD vaccines protect against tumors but do not provide sterilizing immunity, and thus it is generally believed that their use has contributed to increase virulence of field strains with the ability to cause MD in vaccinated chickens. Traditional methods of developing vaccines, like cell culture attenuation, have proved unsuccessful for the development of improved vaccines to protect against highly virulent MD virus (MDV) field strains. With the advent of recombinant DNA technology, it is now possible to study MDV gene function and develop rational vaccines that protect against highly pathogenic strains. In addition, the long term protection conferred by MD vaccines, their excellent safety profile, their efficacy when administered early (at hatch or in ovo), and their ability to overcome maternal antibodies, has made MDV an excellent candidate vector to protect not only against MD but also against other important viral poultry diseases. In this review we will discuss the current status of MD vaccines and their use as vector vaccines to control important viral poultry diseases.
Collapse
|
4
|
Mays JK, Black-Pyrkosz A, Spatz S, Fadly AM, Dunn JR. Protective efficacy of a recombinant bacterial artificial chromosome clone of a very virulent Marek's disease virus containing a reticuloendotheliosis virus long terminal repeat. Avian Pathol 2016; 45:657-666. [PMID: 27258614 DOI: 10.1080/03079457.2016.1197376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Marek's disease virus (MDV), an alphaherpesvirus, causes Marek's disease (MD), a lymphoproliferative disease in poultry characterized by T-cell lymphomas, nerve lesions, and mortality. Vaccination is used worldwide to control MD, but increasingly virulent field strains can overcome this protection, driving a need to create new vaccines. Previous studies revealed that insertion of reticuloendotheliosis virus (REV) long terminal repeat (LTR) into a bacterial artificial chromosome (BAC) clone of a very virulent strain of MDV, Md5, rendered the resultant recombinant virus, rMd5 REV-LTR BAC, fully attenuated in maternal antibody positive (Mab+) chickens at passage 40. In the current study, the protective efficacy of rMd5 REV-LTR BAC was evaluated. First, passage 70 was identified as being fully attenuated in maternal antibody negative chickens and chosen as the optimal passage level for use in protective efficacy studies. Second, three protective efficacy trials were conducted comparing the rMd5 REV-LTR p70 BAC to the CVI988/Rispens vaccine. Groups of Mab+ and Mab- 15I5 × 71 chickens were vaccinated in ovo at 18 days of embryonation or intra-abdominally at day of hatch, and challenged at 5 days post-hatch with the vv+MDV strain 686. Vaccination at day of hatch and in ovo with rMd5 REV-LTR p70 BAC protected chickens against MDV-induced bursa and thymic atrophy, but did not provide the same level of protection against MD tumours as that afforded by the commercial vaccine, CVI988/Rispens.
Collapse
Affiliation(s)
- Jody K Mays
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - Alexis Black-Pyrkosz
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - Stephen Spatz
- b US National Poultry Research Center, United States Department of Agriculture , Agricultural Research Service , Athens , GA , USA
| | - Aly M Fadly
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - John R Dunn
- a Avian Disease and Oncology Laboratory, United States Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| |
Collapse
|
5
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
6
|
Davison F, Nair V. Use of Marek’s disease vaccines: could they be driving the virus to increasing virulence? Expert Rev Vaccines 2014; 4:77-88. [PMID: 15757475 DOI: 10.1586/14760584.4.1.77] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marek's disease (MD) is an economically important neoplastic disease of poultry. MD almost devastated the poultry industry in the 1960s but the disease was brought under control after Marek's disease herpesvirus (MDV) was identified and vaccines were developed. This is the first effective use of an antiviral vaccination to prevent a naturally occurring cancer in any species. MDV infection has many effects. Initially causing a cytolytic infection in B-lymphocytes, MDV infects activated T-lymphocytes where it becomes latent. In susceptible chicken genotypes MDV transforms CD4+ lymphocytes, causing visceral lymphomas and/or neural lesions and paralysis. Fully productive infection and shedding of infectious virus only occurs in the feather-follicle epithelium. Vaccination of newly-hatched chicks with live vaccines has been widely used to successfully control MD since the early 1970s. However, vaccinated chickens still become infected and shed MDV. Vaccine breaks have occurred with regularity and there is evidence that the use of MD vaccines could be driving MDV to greater virulence. MD continues to be a threat and a number of strategies have been adopted such as the use of more potent vaccines and vaccination of the embryonic stage to provide earlier protection. Recombinant MD vaccines are useful vectors and are being exploited to carry both viral and host genes to enhance protective immune responses. The future aim must be to develop a sustainable vaccine strategy that does not drive MDV to increased virulence.
Collapse
Affiliation(s)
- Fred Davison
- Head and Avian Immunology Group, Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, UK.
| | | |
Collapse
|
7
|
Gimeno IM, Cortes AL, Witter RL, Pandiri AR. Optimization of the Protocols for Double Vaccination Against Marek's Disease by Using Commercially Available Vaccines: Evaluation of Protection, Vaccine Replication, and Activation of T Cells. Avian Dis 2012; 56:295-305. [DOI: 10.1637/9930-091311-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Chang S, Ding Z, Dunn JR, Lee LF, Heidari M, Song J, Ernst CW, Zhang H. A comparative evaluation of the protective efficacy of rMd5deltaMeq and CVI988/ Rispens against a vv+ strain of Marek's disease virus infection in a series of recombinant congenic strains of White Leghorn chickens. Avian Dis 2011; 55:384-90. [PMID: 22017035 DOI: 10.1637/9524-091310-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.
Collapse
Affiliation(s)
- Shuang Chang
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 3606 E. Mount Hope Road, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gimeno IM, Cortes AL, Guy JS, Turpin E, Williams C. Replication of recombinant herpesvirus of turkey expressing genes of infectious laryngotracheitis virus in specific pathogen free and broiler chickens followingin ovoand subcutaneous vaccination. Avian Pathol 2011; 40:395-403. [DOI: 10.1080/03079457.2011.588196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Chang S, Dunn JR, Heidari M, Lee LF, Song J, Ernst CW, Ding Z, Bacon LD, Zhang H. Genetics and vaccine efficacy: host genetic variation affecting Marek's disease vaccine efficacy in White Leghorn chickens. Poult Sci 2010; 89:2083-91. [PMID: 20852098 DOI: 10.3382/ps.2010-00740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is a T-cell lymphoma disease of domestic chickens induced by MD virus (MDV), a naturally oncogenic and highly contagious cell-associated α-herpesvirus. Earlier reports have shown that the MHC haplotype as well as non-MHC genes are responsible for genetic resistance to MD. The MHC was also shown to affect efficiency of vaccine response. Using specific-pathogen-free chickens from a series of 19 recombinant congenic strains and their 2 progenitor lines (lines 6(3) and 7(2)), vaccine challenge experiments were conducted to examine the effect of host genetic variation on vaccine efficacy. The 21 inbred lines of White Leghorns share the same B*2 MHC haplotype and the genome of each recombinant congenic strain differs by a random 1/8 sample of the susceptible donor line (7(2)) genome. Chickens from each of the lines were divided into 2 groups. One was vaccinated with turkey herpesvirus strain FC126 at the day of hatch and the other was treated as a nonvaccinated control. Chickens of both groups were inoculated with a very virulent plus strain of MDV on the fifth day posthatch. Analyses of the MD data showed that the genetic line significantly influenced MD incidence and days of survival post-MDV infection after vaccination of chickens (P<0.01). The protective indices against MD varied greatly among the lines with a range of 0 up to 84%. This is the first evidence that non-MHC host genetic variation significantly affects MD vaccine efficacy in chickens in a designed prospective study.
Collapse
Affiliation(s)
- S Chang
- Avian Disease and Oncology Laboratory, USDA, Agricultural Research Service, 3606 E. Mount Hope Road, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang GZ, Zhang R, Zhao HL, Wang XT, Zhang SP, Li XJ, Qin CZ, Lv CM, Zhao JX, Zhou JF. A safety assessment of a fowlpox-vectored Mycoplasma gallisepticum vaccine in chickens. Poult Sci 2010; 89:1301-6. [PMID: 20460677 DOI: 10.3382/ps.2009-00447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant fowlpox virus vaccine expressing key protective Mycoplasma gallisepticum antigens could facilitate in the prevention both of fowlpox virus and M. gallisepticum infections. Vectormune FP-MG vaccine, a recombinant fowlpox virus expressing both M. gallisepticum 40k and mgc genes, was assessed for its safety in 8-wk-old specific-pathogen-free White Leghorn chickens. The vaccine virus was serially passaged 5 times by wing-web inoculation. Based on the postinoculation clinical observation, gross pathological examination of air sacs and peritoneum, genetic stability evaluation, virus shedding and tissue distribution detection, horizontal transmission ability determination, and protection against fowlpox virus challenge, the Vectormune FP-MG vaccine possesses a high level of safety.
Collapse
Affiliation(s)
- G Z Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gimeno IM. Marek's disease vaccines: A solution for today but a worry for tomorrow? Vaccine 2008; 26 Suppl 3:C31-41. [DOI: 10.1016/j.vaccine.2008.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lee LF, Lupiani B, Silva RF, Kung HJ, Reddy SM. Recombinant Marek's disease virus (MDV) lacking the Meq oncogene confers protection against challenge with a very virulent plus strain of MDV. Vaccine 2008; 26:1887-92. [PMID: 18313812 DOI: 10.1016/j.vaccine.2008.01.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/16/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
Abstract
Marek's disease virus (MDV) encodes a basic leucine-zipper protein, Meq, that shares homology with the Jun/Fos family of transcriptional factors. Conclusive evidence that Meq is an oncogene of MDV came from recent studies of a Meq-null virus, rMd5 Delta Meq. This virus replicated well in vitro, but was non-oncogenic in vivo. Further characterization of this virus in vivo indicated that the meq gene is dispensable for cytolytic infection since it replicated well in the lymphoid organs and feather follicular epithelium. Since rMd5 Delta Meq virus was apathogenic for chickens, we set out to investigate whether this virus could be a good candidate vaccine. Vaccine efficacy experiments conducted in Avian Disease and Oncology Laboratory (ADOL) 15I(5)x 7(1) chickens vaccinated with rMd5 Delta Meq virus or an ADOL preparation of CVI988/Rispens indicated that the Meq-null virus provided protection superior to CVI988/Rispens, the most efficacious vaccine presently available, following challenge with a very virulent (rMd5) and a very virulent plus (648A) MDV strains.
Collapse
Affiliation(s)
- Lucy F Lee
- Avian Disease and Oncology Laboratory, Agricultural Research Service, East Lansing, MI 48823, United States.
| | | | | | | | | |
Collapse
|
14
|
Tarpey I, Davis PJ, Sondermeijer P, van Geffen C, Verstegen I, Schijns VEJC, Kolodsick J, Sundick R. Expression of chicken interleukin-2 by turkey herpesvirus increases the immune response against Marek's disease virus but fails to increase protection against virulent challenge. Avian Pathol 2007; 36:69-74. [PMID: 17364512 DOI: 10.1080/03079450601113159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As Marek's disease virus continues to evolve towards greater virulence, more efficacious vaccines will be required in the future. We expressed chicken interleukin-2 (IL-2) from a turkey herpesvirus (HVT) in an attempt to increase the efficacy of HVT as a vaccine against Marek's disease. The recombinant IL-2/HVT was safe for in ovo vaccination, although it replicated less in the birds compared with the parent HVT strain. Expression of IL-2 increased the neutralizing antibody response against HVT but did not increase the protection against virulent Marek's disease virus challenge.
Collapse
Affiliation(s)
- I Tarpey
- Intervet UK, Walton Manor, Walton, Milton Keynes, Bucks, MK7 7AJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|