1
|
Al-Eitan L, Khair I, Shakhatreh Z, Almahdawi D, Alahmad S. Epidemiology, biosafety, and biosecurity of Avian Influenza: Insights from the East Mediterranean region. Rev Med Virol 2024; 34:e2559. [PMID: 38886173 DOI: 10.1002/rmv.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Iliya Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Shakhatreh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Diana Almahdawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Eladl AH, Farag VM, El-Shafei RA, Aziza AE, Awadin WF, Arafat N. Immunological, biochemical and pathological effects of vitamin C and Arabic gum co-administration on H9N2 avian influenza virus vaccinated and challenged laying Japanese quails. BMC Vet Res 2022; 18:408. [PMID: 36401270 PMCID: PMC9673443 DOI: 10.1186/s12917-022-03495-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Aim This study evaluated the effect of co-administration of vitamin C and Arabic gum (AG) supplements on the response of vaccinated (VAC) and challenged laying Japanese quails with avian influenza virus (AIV) H9N2. Materials and methods One hundred and fifty 49-day-old laying Japanese quails were divided into 5 groups (G1-G5): the G1 group was a negative control, G2 group was unvaccinated + H9N2 challenged (Ch), G3 group was unvaccinated + supplements + Ch, G4 group was VAC + Ch, and the G5 group was VAC + supplements + Ch. The supplements (vitamin C, 1 g/liter of drinking water and AG, 1% ration) were given for 5 weeks post-vaccination (PV). The birds were injected subcutaneously with an inactivated H9N2 vaccine at 49 days of age. The quails were then challenged intranasally with AIV H9N2 at the 3rd week PV. Blood, tracheal swab and tissue samples were collected at the 1st, 2nd, and 3rd weeks PV, and at different time points post-challenge (PC). Results Growth performance, egg production (%), egg and eggshell weights, HI antibody titers, clinical signs, lesions, mortality, virus shedding rates, leukogram, biochemical and immunological parameters and histopathological lesions PC showed significant differences (P < 0.05) between the vaccinated-unsupplemented (G4) group and the vaccinated-supplemented (G5) group. G5 showed the highest (P < 0.05) growth performance, egg production, HI antibody titers, and heterophil phagocytic activity and the lowest heterophil/lymphocyte (H/L) ratio, mortality, virus shedding rates, creatinine level and histopathological lesion scores in the lungs. Conclusion The co-administration of vitamin C and AG for 5 weeks can improve growth performance, egg production and the immune response in vaccinated laying quails challenged with AIV H9N2. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03495-y.
Collapse
|
3
|
A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect 2017; 145:3320-3333. [PMID: 29168447 DOI: 10.1017/s0950268817002576] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H9N2 is the most widespread avian influenza virus subtype in poultry worldwide. It infects a broad spectrum of host species including birds and mammals. Infections in poultry and humans vary from silent to fatal. Importantly, all AIV, which are fatal in humans (e.g. H5N1, H7N9) acquired their 'internal' gene segments from H9N2 viruses. Although H9N2 is endemic in the Middle East (ME) and North Africa since the late 1990s, little is known about its epidemiology and genetics on a regional level. In this review, we summarised the epidemiological situation of H9N2 in poultry and mammals in Iran, Iraq, Kuwait, Qatar, United Arab Emirates, Oman, Bahrain, Yemen, Saudi Arabia, Jordan, Palestine, Israel, Syria, Lebanon, Turkey, Egypt, Sudan, Libya, Tunisia, Algeria and Morocco. The virus has been isolated from humans in Egypt and serosurveys indicated widespread infection particularly among poultry workers and pigs in some countries. Some isolates replicated well in experimentally inoculated dogs, mice, hamsters and ferrets. Insufficient protection of immunised poultry was frequently reported most likely due to concurrent viral or bacterial infections and antigenic drift of the field viruses from outdated vaccine strains. Genetic analysis indicated several distinct phylogroups including a panzootic genotype in the Asian and African parts of the ME, which may be useful for the development of vaccines. The extensive circulation of H9N2 for about 20 years in this region where the H5N1 virus is also endemic in some countries, poses a serious public health threat. Regional surveillance and control strategy are highly recommended.
Collapse
|
4
|
Mehrabadi MHF, Bahonar A, Mirzaei K, Molouki A, Ghalyanchilangeroudi A, Ghafouri SA, Tehrani F, Lim SHE. Prevalence of avian influenza (H9N2) in commercial quail, partridge, and turkey farms in Iran, 2014-2015. Trop Anim Health Prod 2017; 50:677-682. [PMID: 29027604 DOI: 10.1007/s11250-017-1438-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
Avian influenza virus (AIV) H9N2 subtype is endemic in Iran and causes substantial economic loss to the growing poultry industry within the country. In this study, a cross-sectional analysis was carried out to determine the sero-prevalence of H9N2 in several commercial farms between the years 2014 and 2015. The comparison of the mean of serum titers and the ratio of sero-positive birds between all units were analyzed using one-way ANOVA test. In 2014, a total of 77 farms (58 turkey farms, 14 quail farms, and 5 partridge farms) and 894 birds (682 turkeys, 154 quails, and 58 partridges) were sampled while in 2015, a total of 69 farms (54 turkey farms, 8 quail farms, and 7 partridge farms) and 856 birds (675 turkeys, 105 quails, and 76 partridges) were sampled. Of that, 52 of 77 sampled farms (67.5%) and 437 of 894 samples (48.9%) were positive for H9N2 in 2014 while. Forty-one of 69 farms (59.4%) and 307 of 856 sera (35.9%) were positive in 2015. Furthermore, the mean titer of partridge farms was significantly lower than that of turkey farms (p < 0.01) and the mean percentage of sero-positive turkey farms was significantly higher than partridge farms (p < 0.01) in 2014. In 2015, no significant difference was observed between the mean sera titer amongst farms and percentage of sero-positive birds (p > 0.05). Our results indicated that H9N2 is circulating in these farms. Since many more such farms are being established for operations, in addition to the threat of emergence and continuous reemergence of the disease in these farms, enhanced veterinary biosecurity measures on farms are required for mitigation.
Collapse
Affiliation(s)
- Mohammad Hosein Fallah Mehrabadi
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | - Alireza Bahonar
- Department of Food Hygiene & Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Mirzaei
- Department of Health and Management of Poultry Diseases, Qazvin Veterinary Organization, Qazvin, Iran
| | - Aidin Molouki
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Ali Ghafouri
- Department of Health and Management of Poultry Diseases, Iranian Veterinary Organization, Tehran, Iran
| | - Farshad Tehrani
- Department of Health and Management of Poultry Diseases, Iranian Veterinary Organization, Tehran, Iran
| | - Swee Hua Erin Lim
- Perdana University - Royal College of Surgeons in Ireland School of Medicine (PU-RCSI), MAEPS Building, MARDI Complex, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Masoud S, Bagherpour A, Akbarnejad F. Roll of hemagglutinin gene in the biology of avian influenza virus. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar ART, Mirjalili A, Mohammadi M, Banihashemi R, Ebrahimi SM. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a universal vaccine candidate enhances both humoral and cell-mediated immune responses and decreases viral shedding against experimental challenge of H9N2 influenza in chickens. Vet Microbiol 2014; 174:116-26. [PMID: 25293397 DOI: 10.1016/j.vetmic.2014.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023]
Abstract
As cellular immunity is essential for virus clearance, it is commonly accepted that no adequate cellular immunity is achieved by all available inactivated HA-based influenza vaccines. Thus, an improved influenza vaccine to induce both humoral and cell-mediated immune responses is urgently required to control LPAI H9N2 outbreaks in poultry farms. M2e-based vaccines have been suggested and developed as a new generation of universal vaccine candidate against influenza A infection. Our previous study have shown that a prime-boost administration of recombinant 4×M2e.HSP70c (r4M2e/H70c) fusion protein compared to conventional HA-based influenza vaccines provided full protection against lethal dose of influenza A viruses in mice. In the present study, the immunogenicity and protective efficacy of (r4M2e/H70c) was examined in chickens. The data reported herein show that protection against H9N2 viral challenge was significantly increased in chickens by injection of r4M2e/H70c compared with injection of conventional HA-based influenza vaccine adjuvanted with MF59 or recombinant 4×M2e (r4M2e) without HSP70c. Oropharyngeal and cloacal shedding of the virus was detected in all of the r4M2e/H70c vaccinated birds at 2 days after challenge, but the titer was low and decreased rapidly to reach undetectable levels at 7 days after challenge. Moreover, comparison of protective efficacy against LPAI H9N2 in birds intramuscularly immunized with r4M2e/H70c likely represented the ability of the M2e-based vaccine in providing cross-protection against heterosubtypic H9N2 challenge and also allowed the host immune system to induce HA-homosubtype neutralizing antibody against H9N2 challenge. This protective immunity might be attributed to enhanced cell-mediated immunity, which is interpreted as increased lymphocytes proliferation, increased levels of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines production and increased CD4(+) to CD8(+) ratios, resulting from the injection of four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (4×M2e) genetically fused to C-terminus of Mycobacterium tuberculosis HSP70 (mHSP70c).
Collapse
Affiliation(s)
- Mehran Dabaghian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran; Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, PO Box 14155-6453, Tehran, Iran
| | - Ali Mohammad Latify
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Hassan Nili
- Department of Avian Research, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Iran
| | | | - Ali Mirjalili
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Mashallah Mohammadi
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Reza Banihashemi
- Department of Medical Immunology, Tarbiyat Modares University, Tehran, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran.
| |
Collapse
|
7
|
Bertran K, Dolz R, Majó N. Pathobiology of avian influenza virus infection in minor gallinaceous species: a review. Avian Pathol 2014; 43:9-25. [PMID: 24467281 DOI: 10.1080/03079457.2013.876529] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Susceptibility to avian influenza viruses (AIVs) can vary greatly among bird species. Chickens and turkeys are major avian species that, like ducks, have been extensively studied for avian influenza. To a lesser extent, minor avian species such as quail, partridges, and pheasants have also been investigated for avian influenza. Usually, such game fowl species are highly susceptible to highly pathogenic AIVs and may consistently spread both highly pathogenic AIVs and low-pathogenic AIVs. These findings, together with the fact that game birds are considered bridge species in the poultry-wildlife interface, highlight their interest from the transmission and biosecurity points of view. Here, the general pathobiological features of low-pathogenic AIV and highly pathogenic AIV infections in this group of avian species have been covered.
Collapse
Affiliation(s)
- Kateri Bertran
- a Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | | | | |
Collapse
|
8
|
Iqbal M, Yaqub T, Mukhtar N, Shabbir MZ, McCauley JW. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds. Vet Res 2013; 44:100. [PMID: 24134616 PMCID: PMC4015117 DOI: 10.1186/1297-9716-44-100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022] Open
Abstract
Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises.
Collapse
Affiliation(s)
- Munir Iqbal
- Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK.
| | | | | | | | | |
Collapse
|
9
|
Ferro PJ, Khan O, Vuong C, Reddy SM, LaCoste L, Rollins D, Lupiani B. Avian influenza virus investigation in wild bobwhite quail from Texas. Avian Dis 2013; 56:858-60. [PMID: 23402104 DOI: 10.1637/10197-041012-resnote.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to determine the prevalence of avian influenza viruses (AIV) in bobwhite quail (Colinus virginianus) populations from the rolling plains of Texas, U. S. A. A total of 1320 swab samples (652 tracheal swabs and 668 cloacal swabs) and 44 serum samples were collected from wild-captured or hunter-harvested bobwhite quail from November 2009 to April 2011 at the Rolling Planes Quail Research Ranch, Fisher County, Texas, U. S. A. The presence of AIV in the swabs was determined by real-time reverse-transcription-PCR (rRT-PCR) and all samples positive or suspicious by rRT-PCR were further processed for virus isolation in embryonated chicken eggs. A total of 18 (1.4%) swab samples tested positive for AIV by rRT-PCR (cycle threshold [Ct] values < 35): 13 cloacal swabs (1.9%) and 5 tracheal swabs (0.8%). In addition, 100 (7.6%) swab samples were considered suspicious (Ct values 35.1-40): 69 cloacal swabs (10.3%) and 31 tracheal swabs (4.7%). No virus was isolated from any of the rRT-PCR-positive or suspicious samples tested. Additionally, 44 serum samples were screened for AIV antibodies and were negative. The results presented here indicate low prevalence of AIV in wild populations of bobwhite quail.
Collapse
Affiliation(s)
- Pamela J Ferro
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Bertran K, Dolz R, Busquets N, Gamino V, Vergara-Alert J, Chaves AJ, Ramis A, Abad FX, Höfle U, Majó N. Pathobiology and transmission of highly and low pathogenic avian influenza viruses in European quail (Coturnix c. coturnix). Vet Res 2013; 44:23. [PMID: 23537387 PMCID: PMC3640924 DOI: 10.1186/1297-9716-44-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses.
Collapse
Affiliation(s)
- Kateri Bertran
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Genetic characterization of HA gene of low pathogenic H9N2 influenza viruses isolated in Israel during 2006-2012 periods. Virus Genes 2012; 46:255-63. [PMID: 23271448 DOI: 10.1007/s11262-012-0852-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
H9N2 influenza viruses are isolated in Israel since 2000 and became endemic. From November 2006 to the beginning of 2012, many H9N2 viruses were identified, all belonged to the Asian G1-like lineage represented by A/qu/Hong Kong/G1/97 (H9N2). In the present study, 66 isolates were selected for their hemagglutinin gene characterization. Most H9N2 isolates were distributed between two main groups, identified as the 4th and 5th introductions. The 5th introduction, was represented by a compact cluster containing viruses isolated in 2011-2012; the 4th introduction was subdivided into two subgroups, A and B, each containing at least two clusters, which can be identified as A-1, A-2, B-1, and B2, respectively. Genetic analysis of the deduced HA proteins of viruses, belonging to the 4th and 5th introductions, revealed amino acid variations in 79 out of 542 positions. All isolates had typical low pathogenicity motifs at the hemagglutinin (HA) cleavage site. Most viruses had leucine at position 216 in a receptor binding pocket that enables the virus to bind successfully with the cellular receptors intrinsic to mammals, including humans. It was shown that the differences between the HA proteins of viruses used for vaccine production and local field isolates increased in parallel with the duration and intensity of vaccine use, illustrating the genetic diversity of the H9N2 viruses in Israel.
Collapse
|
12
|
In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology 2012; 430:63-72. [PMID: 22595444 DOI: 10.1016/j.virol.2012.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022]
Abstract
Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.
Collapse
|
13
|
Jazi MHZ, Dabaghian M, Tebianian M, Gharagozlou MJ, Ebrahimi SM. In vivo electroporation enhances immunogenicity and protection against influenza A virus challenge of an M2e-HSP70c DNA vaccine. Virus Res 2012; 167:219-25. [PMID: 22609252 DOI: 10.1016/j.virusres.2012.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022]
Abstract
There is a growing concern regarding continuous risk of emerging a new influenza pandemic. It is highlighted the need for novel vaccination techniques that quickly and effectively employed to respond to such threats. Although, DNA vaccine is a simple and effective approach to induce antigen specific immune responses, their potency requires further improvement. DNA vaccine encoding conserved antigen of influenza virus could provide protection in various animal models. Therefore, we constructed a plasmid vector encoding M2e-HSP70c sequences, pcDNA/MHc, as a candidate for universal influenza vaccine. The expression of newly constructed vectors was verified by transient transfection of mammalian cells (HEK293T cell line) and western blot analysis using commercial antibodies. Mice were injected subcutaneously (s.c.) by the help of electroporation (IEP) in the footpad area and boosted without IEP with 100 μg of constructed vector. Furthermore, the potency of this construct to provoke humoral immune responses and its protectivity against lethal dose of viral challenge were evaluated. Based on our study, the fusion construct was immunogenic in mice and was able to confer both protection against lethal challenge of H1N1 virus and reduce viral load in lung homogenates of the infected mice.
Collapse
Affiliation(s)
- Mohammad Hossein Zabeh Jazi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tehran, PO Box 14155-6453, Tehran, Iran
| | | | | | | | | |
Collapse
|