Neely BA, Prager KC, Bland AM, Fontaine C, Gulland FM, Janech MG. Proteomic Analysis of Urine from California Sea Lions ( Zalophus californianus): A Resource for Urinary Biomarker Discovery.
J Proteome Res 2018;
17:3281-3291. [PMID:
30113852 DOI:
10.1021/acs.jproteome.8b00416]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary markers for the assessment of kidney diseases in wild animals are limited, in part, due to the lack of urinary proteome data, especially for marine mammals. One of the most prevalent kidney diseases in marine mammals is caused by Leptospira interrogans, which is the second most common etiology linked to stranding of California sea lions ( Zalophus californianus). Urine proteins from 11 sea lions with leptospirosis kidney disease and eight sea lions without leptospirosis or kidney disease were analyzed using shotgun proteomics. In total, 2694 protein groups were identified, and 316 were differentially abundant between groups. Major urine proteins in sea lions were similar to major urine proteins in dogs and humans except for the preponderance of resistin, lysozyme C, and PDZ domain containing 1, which appear to be over-represented. Previously reported urine protein markers of kidney injury in humans and animals were also identified. Notably, neutrophil gelatinase-associated lipocalin, osteopontin, and epidermal fatty acid binding protein were elevated over 20-fold in the leptospirosis-infected sea lions. Consistent with leptospirosis infection in rodents, urinary proteins associated with the renin-angiotensin system were depressed, including neprilysin. This study represents a foundation from which to explore the clinical use of urinary protein markers in California sea lions.
Collapse