1
|
Johns JL, Baumgartner TR, Sanchez CR, Dolan BP. Phagocytic Function and Flow Cytometric Phenotype of Asian Elephant Monocytes. Animals (Basel) 2024; 14:2297. [PMID: 39199831 PMCID: PMC11350674 DOI: 10.3390/ani14162297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Optimal veterinary care of managed elephant populations is vital due to the continued decline of wild populations. Appropriate health monitoring and accurate disease diagnosis include hematologic evaluation. Elephant hematology is distinctive in that elephants have high percentages of monocytes in health. Elephant monocytes also have unusual morphology, a feature shared with manatees and rock hyraxes. Manual white blood cell counting is used for elephant hematology, as analyzers are generally inaccurate. The aims of this study were to evaluate basic cell isolation and functional testing protocols for use in elephant monocyte research, and to test several available antibodies via flow cytometry for use in elephant monocyte identification. Peripheral blood samples from five Asian elephants (Elephas maximus) were used. Methods for monocyte isolation and evaluation of phagocytic function were established. Putative lymphocyte and monocyte populations were identified using a scatter on flow cytometry. Antibodies against CD11b, CD11c, CD14, and ionized calcium-binding adapter molecule 1 (IBA1) were tested, with IBA1 showing the highest apparent diagnostic utility in labeling monocytes. Combined flow cytometric scatter and IBA1 positivity appear to identify Asian elephant monocytes. These data provide a methodologic basis for further investigation into elephant monocyte function and immune response to infection.
Collapse
Affiliation(s)
- Jennifer L. Johns
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (T.R.B.); (B.P.D.)
| | - Trinity R. Baumgartner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (T.R.B.); (B.P.D.)
| | | | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (T.R.B.); (B.P.D.)
| |
Collapse
|
2
|
Monitoring IgG against Mycobacterium tuberculosis proteins in an Asian elephant cured of tuberculosis that developed from long-term latency. Sci Rep 2022; 12:4310. [PMID: 35279668 PMCID: PMC8917326 DOI: 10.1038/s41598-022-08228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Tuberculosis (TB) is fatal in elephants, hence protecting elephants from TB is key not only in the conservation of this endangered animal, but also to prevent TB transmission from elephants to humans. Most human TB cases arise from long-term asymptomatic infections. Significant diagnostic challenges remain in the detection of both infection and disease development from latency in elephants due to their huge bodies. In this study, we assessed cryopreserved sera collected for over 16 years, from the first Japanese treatment case of elephant TB. Semi-quantification of IgG levels to 11 proteins showed high detection levels of 3 proteins, namely ESAT6/CFP10, MPB83 and Ag85B. The level of IgG specific to these 3 antigens was measured longitudinally, revealing high and stable ESAT6/CFP10 IgG levels regardless of onset or treatment. Ag85B-specifc IgG levels were largely responsive to onset or treatment, while those of MPB83 showed intermediate responses. These results suggest that ESAT6/CFP10 is immunodominant in both asymptomatic and symptomatic phases, making it useful in the detection of infection. On the other hand, Ag85B has the potential to be a marker for the prediction of disease onset and in the evaluation of treatment effectiveness in elephants.
Collapse
|
3
|
Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012-2020). Pathogens 2021; 10:pathogens10050584. [PMID: 34064571 PMCID: PMC8151627 DOI: 10.3390/pathogens10050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of bacteria that cause tuberculosis (TB) in diverse hosts, including captive and free-ranging wildlife species. There is significant research interest in developing immunodiagnostic tests for TB that are both rapid and reliable, to underpin disease surveillance and control. The aim of this study was to carry out an updated review of diagnostics for TB in non-bovid species with a focus predominantly on those based on measurement of immunity. A search was carried out to identify relevant papers meeting a pre-defined set of inclusion criteria. Forty-one papers were identified from this search, from which only twenty papers contained data to measure and compare diagnostic performance using diagnostic odds ratio. The diagnostic tests from each study were ranked based on sensitivity, specificity, and diagnostic odds ratio to define high performing tests. High sensitivity and specificity values across a range of species were reported for a new antigenic target, P22 complex, demonstrating it to be a reliable and accurate antigenic target. Since the last review of this kind was undertaken, the immunodiagnosis of TB in meerkats and African wild dogs was reported for the first time. Suid species showed the most consistent immunological responses and highlight a potential dichotomy between humoral and cellular immune responses.
Collapse
|
4
|
OUTBREAK OF MYCOBACTERIUM TUBERCULOSIS IN A HERD OF CAPTIVE ASIAN ELEPHANTS ( ELEPHAS MAXIMUS): ANTEMORTEM DIAGNOSIS, TREATMENT, AND LESSONS LEARNED. J Zoo Wildl Med 2019; 49:748-754. [PMID: 30212332 DOI: 10.1638/2017-0200.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) was diagnosed in four Asian elephants ( Elephas maximus) in a zoo in the United States. The first case was detected by isolation of Mycobacterium tuberculosis during routine trunk wash (TW) culture testing of a herd of eight elephants. Retrospective antibody analyses revealed seroconversion 1 yr before diagnosis. Serological testing of the whole elephant herd identified two additional suspect bulls with detectable antibody, but which remained culture-negative and had no clinical signs of disease. In the following months, M. tuberculosis, identical to the isolate from the index case, was isolated from TW samples of these two elephants. A fourth elephant seroconverted nearly 4 yr after the first TB case was detected, and M. tuberculosis was isolated from a TW sample collected 1 mo later. All four infected elephants received anti-TB therapy. Two treated elephants were eventually euthanized for reasons unrelated to M. tuberculosis and found to be culture-negative on necropsy, although one of them had PCR-positive lung lesions. One infected animal had to be euthanized due to development of a drug-resistant strain of M. tuberculosis; this animal did not undergo postmortem examination due to risk of staff exposure. The fourth animal is currently on treatment. Serial serological and culture results of the other four herd mates have remained negative.
Collapse
|
5
|
Infantes-Lorenzo JA, Dave D, Moreno I, Anderson P, Lesellier S, Gormley E, Dominguez L, Balseiro A, Gortázar C, Dominguez M, Salguero FJ. New serological platform for detecting antibodies against Mycobacterium tuberculosis complex in European badgers. Vet Med Sci 2019; 5:61-69. [PMID: 30656864 PMCID: PMC6376137 DOI: 10.1002/vms3.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
European badgers (Meles meles) have been identified as wildlife reservoirs for Mycobacterium bovis in the UK and Ireland, and may also have a role in the epidemiology of animal tuberculosis in other European regions. Thus, detection of M. bovis‐infected badgers may be required for the purposes of surveillance and monitoring of disease levels in infected populations. Current serological assays to detect M. bovis infection in live badgers, while rapid and inexpensive, show limited diagnostic sensitivity. Here we describe and evaluate new ELISA platforms for the recognition of the P22 multiprotein complex derived from the purified protein derivative (PPD) of M. bovis. The recognition of IgG against P22 multiprotein complex derived from PPD‐B was tested by ELISA in the serum of badgers from the UK, Ireland and Spain. TB infection in the badgers was indicated by the presence of M. bovis in tissues by culture and histology at post‐mortem examination and TB‐free status was established by repeated negativity in the interferon γ release assay (IGRA). In experimentally infected badgers, humoral antibody responses against P22 developed within 45 days post‐infection. The ELISA tests showed estimated sensitivity levels of 74–82% in experimentally and naturally infected badgers with specificities ranging from 75% to 100% depending on the badger population tested. The P22 multi‐antigen based ELISAs provide a sensitive and specific test platform for improved tuberculosis surveillance in badgers.
Collapse
Affiliation(s)
| | - Dipesh Dave
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Immaculada Moreno
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Paul Anderson
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Sandrine Lesellier
- Bacteriology Department, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Eamonn Gormley
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Balseiro
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva-Gijón, Asturias, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Mercedes Dominguez
- Unidad de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Francisco J Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
6
|
Hermes R, Saragusty J, Moser I, Holtze S, Nieter J, Sachse K, Voracek T, Bernhard A, Bouts T, Göritz F, Hildebrandt TB. Bronchoalveolar lavage for diagnosis of tuberculosis infection in elephants. Epidemiol Infect 2018; 146:481-488. [PMID: 29397050 PMCID: PMC9134556 DOI: 10.1017/s0950268818000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis (TB) has been known to affect elephants for thousands of years. It was put into spotlight when few circus elephants were diagnosed carrying Mycobacterium (M.) tuberculosis. Because of the zoonotic risk and high susceptibility to M. tuberculosis, periodic testing was enacted since, in captive breeding programmes. Presently, trunk wash is the recommended diagnostic procedure for TB. Trunk wash, however, puts the operator at risk, has low sensitivity, and is prone to contamination. Here, bronchoalveolar lavage is described for the first time for TB diagnosis in elephants. Bronchial, trunk and mouth fluids were investigated using bacterial culture, M. tuberculosis complex (MTC)-specific real-time quantitative PCR (qPCR) and mycobacterial genus-specific qPCR for overall presence of mycobacteria or mycobacterial DNA including bacteria or DNA of closely related genera, respectively, in 14 elephants. Neither bacteria of the MTC nor their DNA were identified in any of the elephants. Yet, 25% of the cultures grew non-tuberculous mycobacteria (NTM) or closely related bacterial species. Furthermore, 85% of the samples contained DNA of NTM or closely related bacterial genera. This finding might explain continued false-positive results from various serological tests. From a zoonotic point of view, bronchoalveolar lavage is safer for the testing personal, has higher probability of capturing MTC and, through PCR, identifies DNA NTM in elephants. Yet, necessary endoscopic equipment, animal sedation and access to a TB reference laboratory might pose challenging requirements in remote conditions in some elephant range countries.
Collapse
Affiliation(s)
- R. Hermes
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - J. Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - I. Moser
- Federal Research Institute for Animal Health, Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institute, Naumburger Straße 96a, Jena 07743, Germany
| | - S. Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - J. Nieter
- Federal Research Institute for Animal Health, Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institute, Naumburger Straße 96a, Jena 07743, Germany
| | - K. Sachse
- Federal Research Institute for Animal Health, Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institute, Naumburger Straße 96a, Jena 07743, Germany
| | - T. Voracek
- Tierärztliche Ordination Tiergarten Schönbrunn, Seckendorff-Gudent-Weg 6, Vienna A-1130, Austria
| | - A. Bernhard
- Zoo Leipzig GmbH, Pfaffendorfer Str. 29, Leipzig 04105, Germany
| | - T. Bouts
- Park Pairi Daiza, Domaine de Cambron in B-7940 Brugelette, Belgium
| | - F. Göritz
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - T. B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| |
Collapse
|
7
|
Rosen LE, Hanyire TG, Dawson J, Foggin CM, Michel AL, Huyvaert KP, Miller MA, Olea-Popelka FJ. Tuberculosis serosurveillance and management practices of captive African elephants (Loxodonta africana) in the Kavango-Zambezi Transfrontier Conservation Area. Transbound Emerg Dis 2017; 65:e344-e354. [PMID: 29143466 DOI: 10.1111/tbed.12764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 11/29/2022]
Abstract
Transfrontier conservation areas represent an international effort to encourage conservation and sustainable development. Their success faces a number of challenges, including disease management in wildlife, livestock and humans. Tuberculosis (TB) affects humans and a multitude of non-human animal species and is of particular concern in sub-Saharan Africa. The Kavango-Zambezi Transfrontier Conservation Area encompasses five countries, including Zimbabwe, and is home to the largest contiguous population of free-ranging elephants in Africa. Elephants are known to be susceptible to TB; thus, understanding TB status, exposure and transmission risks to and from elephants in this area is of interest for both conservation and human health. To assess risk factors for TB seroprevalence, a questionnaire was used to collect data regarding elephant management at four ecotourism facilities offering elephant-back tourist rides in the Victoria Falls area of Zimbabwe. Thirty-five working African elephants were screened for Mycobacterium tuberculosis complex antibodies using the ElephantTB Stat-Pak and the DPP VetTB Assay for elephants. Six of 35 elephants (17.1%) were seropositive. The risk factor most important for seropositive status was time in captivity. This is the first study to assess TB seroprevalence and risk factors in working African elephants in their home range. Our findings will provide a foundation to develop guidelines to protect the health of captive and free-ranging elephants in the southern African context, as well as elephant handlers through simple interventions. Minimizing exposure through shared feed with other wildlife, routine TB testing of elephant handlers and regular serological screening of elephants are recommended as preventive measures.
Collapse
Affiliation(s)
- L E Rosen
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - T G Hanyire
- Wildlife Veterinary Unit, Department of Livestock and Veterinary Services, Ministry of Agriculture, Mechanisation and Irrigation, Harare, Zimbabwe.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - J Dawson
- Victoria Falls Wildlife Trust, Victoria Falls, Zimbabwe
| | - C M Foggin
- Victoria Falls Wildlife Trust, Victoria Falls, Zimbabwe
| | - A L Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - K P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - M A Miller
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - F J Olea-Popelka
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.,Applied Veterinary Epidemiology Research Group, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Strike TB, Feltrer Y, Flach E, Macgregor SK, Guillaume S. Investigation and management of an outbreak of multispecies mycobacteriosis in Australian lungfish (Neoceratodus fosteri) including the use of triple antibiotic treatment. JOURNAL OF FISH DISEASES 2017; 40:557-570. [PMID: 27453998 DOI: 10.1111/jfd.12535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Disease due to non-tuberculous mycobacteria (NTM) is common in fish. Current recommendations focus on outbreak management by depopulating entire fish stocks and disinfecting tanks. Treatment is not advocated. Treatment may be appropriate, however, where individual, valuable fish are concerned. ZSL London Zoo managed an outbreak of mycobacteriosis in a valuable group of imported F1 captive-bred Australian lungfish (Neoceratodus fosteri) by depopulation, isolation, extensive testing and daily oral antibiotic treatment. Four species of Mycobacterium (M. marinum, M. fortuitum, M. chelonae and M. peregrinum) were involved in this outbreak, each with unique antibiotic sensitivities. Triple therapy with rifampicin, doxycycline and enrofloxacin for 8 months was the most effective antibiotic combination, resulting in full disease resolution. No side effects were noted and, more than 18 months post-treatment, no recurrence had occurred. This is the first report of mycobacterial disease in lungfish and the first report of a polymycobacterial outbreak in fish involving these four species of Mycobacterium. This report demonstrates the value of extensive isolation and identification. Also, as therapies currently advised in standard texts did not reflect the antibiotic sensitivity of the NTM found in the fish reported here, we recommend that antibiotic treatment should always be based on sensitivity testing.
Collapse
Affiliation(s)
- T B Strike
- London Zoo Veterinary Department, Zoological Society of London (ZSL), London, UK
| | - Y Feltrer
- London Zoo Veterinary Department, Zoological Society of London (ZSL), London, UK
| | - E Flach
- London Zoo Veterinary Department, Zoological Society of London (ZSL), London, UK
| | - S K Macgregor
- London Zoo Veterinary Department, Zoological Society of London (ZSL), London, UK
| | - S Guillaume
- London Zoo Aquarium, Zoological Society of London (ZSL), London, UK
| |
Collapse
|
9
|
Rapid screening for Mycobacterium tuberculosis complex in clinical elephant trunk wash samples. Res Vet Sci 2017; 112:52-58. [PMID: 28126601 DOI: 10.1016/j.rvsc.2016.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/06/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022]
Abstract
Mycobacterium tuberculosis can infect and be transmitted between elephants and humans. In elephants, the 'gold standard' reference test for detection of tuberculosis is culture, which takes a minimum of eight weeks for results and has limited sensitivity. A screening test that is rapid, easily implemented, and accurate is needed to aid in diagnosis of tuberculosis in elephants. Ninety-nine clinical trunk wash samples obtained from 33 elephants were utilized to validate three molecular extraction techniques followed by a polymerase chain reaction for detection of M. tuberculosis. Diagnostic sensitivity and specificity were estimated compared to culture. Kappa coefficients were determined between molecular results and various culture categories and serological test results. An internal amplification control was developed and assessed to monitor for PCR inhibition. One molecular test (the Column method) outperformed the other two, with diagnostic sensitivity and kappa agreement estimates of 100% (CI 57-100) and 0.46 (CI 0.2-0.74), respectively, compared to culture alone. The percentage of molecular-positive/culture-negative samples was 8.4% overall. The molecular extraction technique followed by PCR provides a much-needed rapid screening tool for detection of tuberculosis in elephants. Immediate procedures can be implemented to further assess PCR-positive animals and provide personnel biosecurity. While a positive result is not a definitive test for elephant tuberculosis, the molecular test results can be used to support current diagnostic procedures applied by veterinarians for treatment decisions to prevent the spread of tuberculosis in elephants.
Collapse
|
10
|
EVALUATION OF DIAGNOSTIC ACCURACY OF THE COMPARATIVE TUBERCULIN SKIN TEST IN REHABILITANT BORNEAN ORANGUTANS (PONGO PYGMAEUS). J Zoo Wildl Med 2015; 46:833-42. [PMID: 26667540 DOI: 10.1638/2014-0220.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tuberculin skin test (TST) has been the mainstay of tuberculosis (TB) testing in primates for decades, but its interpretation in orangutans (Pongo spp.) is challenging, because many animals react strongly, without evidence of infection with Mycobacterium tuberculosis complex. One explanation is cross-reactivity with environmental nontuberculous mycobacteria (NTM). The use of a comparative TST (CTST), comparing reactivity to avian (representing NTM) and bovine (representing tuberculous mycobacteria) tuberculins aids in distinguishing cross-reactivity due to sensitization by NTM from shared antigens. The specificity of the TST can be increased with the use of CTST. We considered three interpretations of the TST in rehabilitant Bornean orangutans ( Pongo pygmaeus ) using avian purified protein derivative (APPD; 25,000 IU/ml) and two concentrations of bovine purified protein derivative (BPPD; 100,000 and 32,500 IU/ml). The tests were evaluated for their ability to identify accurately seven orangutans previously diagnosed with and treated for TB from a group of presumed negative individuals (n = 288 and n = 161 for the two respective BPPD concentrations). BPPD at 32,500 IU/ml had poor diagnostic capacity, whereas BPPD at 100,000 IU/ml performed better. The BPPD-only interpretation had moderate sensitivity (57%) and poor specificity (40%) and accuracy (41%). The comparative interpretation at 72 hr had similar sensitivity (57%) but improved specificity (95%) and accuracy (94%). However, best results were obtained by a comparative interpretation incorporating the 48- and 72-hr scores, which had good sensitivity (86%), specificity (95%) and accuracy (95%). These data reinforce recommendations that a CTST be used in orangutans and support the use of APPD at 25,000 IU/ml and BPPD at 100,000 IU/ml. The highest score at each site from the 48- and 72-hr checks should be considered the result for that tuberculin. If the bovine result is greater than the avian result, the animal should be considered a TB suspect.
Collapse
|