1
|
Popov IV, Popov IV, Krikunova AA, Lipilkina TA, Derezina TN, Chikindas ML, Venema K, Ermakov AM. Gut Microbiota Composition of Insectivorous Synanthropic and Fructivorous Zoo Bats: A Direct Metagenomic Comparison. Int J Mol Sci 2023; 24:17301. [PMID: 38139130 PMCID: PMC10744024 DOI: 10.3390/ijms242417301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Bats are natural reservoirs for many emerging viral diseases. That is why their virome is widely studied. But at the same time, studies of their bacterial gut microbiota are limited, creating a degree of uncertainty about the role of bats in global microbial ecology. In this study, we analyzed gut microbiota of insectivorous Nyctalus noctula and Vespertilio murinus from rehabilitation centers from Rostov-on-Don and Moscow, respectively, and fructivorous Carollia perspicillata from the Moscow Zoo based on V3-V4 16S rRNA metagenomic sequencing. We revealed that microbial diversity significantly differs between the insectivorous and fructivorous species studied, while the differences between N. noctula and V. murinus are less pronounced, which shows that bats' gut microbiota is not strictly species-specific and depends more on diet type. In the gut microbiota of synanthropic bats, we observed bacteria that are important for public health and animal welfare such as Bacteroides, Enterobacter, Clostridiaceae, Enterococcus, Ureaplasma, Faecalibacterium, and Helicobacter, as well as some lactic acid bacteria such as Pediococcus, Lactobacillus, Lactococcus, and Weisella. All these bacteria, except for Bacteroides and Weisella, were significantly less abundant in C. perspicillata. This study provides a direct metagenomic comparison of synanthropic insectivorous and zoo fructivorous bats, suggesting future directions for studying these animals' role in microbial ecology.
Collapse
Affiliation(s)
- Igor V. Popov
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Ilia V. Popov
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Anastasya A. Krikunova
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Tatyana A. Lipilkina
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Tatyana N. Derezina
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| | - Michael L. Chikindas
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Alexey M. Ermakov
- Faculty of Bioengineering and Veterinary Medicine and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (A.A.K.); (T.A.L.); (T.N.D.); (M.L.C.); (A.M.E.)
| |
Collapse
|
2
|
Popov IV, Berezinskaia IS, Popov IV, Martiusheva IB, Tkacheva EV, Gorobets VE, Tikhmeneva IA, Aleshukina AV, Tverdokhlebova TI, Chikindas ML, Venema K, Ermakov AM. Cultivable Gut Microbiota in Synanthropic Bats: Shifts of Its Composition and Diversity Associated with Hibernation. Animals (Basel) 2023; 13:3658. [PMID: 38067008 PMCID: PMC10705225 DOI: 10.3390/ani13233658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 01/14/2024] Open
Abstract
The role of bats in the global microbial ecology no doubt is significant due to their unique immune responses, ability to fly, and long lifespan, all contributing to pathogen spread. Some of these animals hibernate during winter, which results in the altering of their physiology. However, gut microbiota shifts during hibernation is little studied. In this research, we studied cultivable gut microbiota composition and diversity of Nyctalus noctula before, during, and after hibernation in a bat rehabilitation center. Gut microorganisms were isolated on a broad spectrum of culture media, counted, and identified with mass spectrometry. Linear modeling was used to investigate associations between microorganism abundance and N. noctula physiological status, and alpha- and beta-diversity indexes were used to explore diversity changes. As a result, most notable changes were observed in Serratia liquefaciens, Hafnia alvei, Staphylococcus sciuri, and Staphylococcus xylosus, which were significantly more highly abundant in hibernating bats, while Citrobacter freundii, Klebsiella oxytoca, Providencia rettgeri, Citrobacter braakii, and Pedicoccus pentosaceus were more abundant in active bats before hibernation. The alpha-diversity was the lowest in hibernating bats, while the beta-diversity differed significantly among all studied periods. Overall, this study shows that hibernation contributes to changes in bat cultivable gut microbiota composition and diversity.
Collapse
Affiliation(s)
- Igor V. Popov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Iraida S. Berezinskaia
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-on-Don, Russia; (I.S.B.); (I.B.M.); (A.V.A.)
| | - Ilia V. Popov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
| | - Irina B. Martiusheva
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-on-Don, Russia; (I.S.B.); (I.B.M.); (A.V.A.)
| | - Elizaveta V. Tkacheva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
| | - Vladislav E. Gorobets
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
| | - Iuliia A. Tikhmeneva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
| | - Anna V. Aleshukina
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-on-Don, Russia; (I.S.B.); (I.B.M.); (A.V.A.)
| | - Tatiana I. Tverdokhlebova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-on-Don, Russia; (I.S.B.); (I.B.M.); (A.V.A.)
| | - Michael L. Chikindas
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands;
| | - Alexey M. Ermakov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia; (I.V.P.); (E.V.T.); (V.E.G.); (I.A.T.); (M.L.C.); (A.M.E.)
| |
Collapse
|