1
|
Wang Z, Martin A, Brunton D, Grueter CC, Qu J, He JS, Ji W, Nan Z. The effects of grassland degradation on the genetic structure of a small mammal. Integr Zool 2024. [PMID: 38704846 DOI: 10.1111/1749-4877.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.
Collapse
Affiliation(s)
- Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Amy Martin
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Dianne Brunton
- School of Natural Sciences (SNS), Massey University, Auckland, New Zealand
| | - Cyril C Grueter
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, China
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weihong Ji
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- School of Natural Sciences (SNS), Massey University, Auckland, New Zealand
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Colunga-Salas P, Marines-Macías T, Hernández-Canchola G, Barbosa S, Ramírez C, Searle JB, León-Paniagua L. Population genomics reveals differences in genetic structure between two endemic arboreal rodent species in threatened cloud forest habitat. MAMMAL RES 2023. [DOI: 10.1007/s13364-022-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
Genomic tools are now commonly used to assess the genetic diversity and genetic structure of species and populations, and they provide the ability to describe and address the negative effects of population declines and fragmentation. However, such studies are lacking for arboreal mammals despite their contribution to various ecosystem services, especially in uncommon and critically endangered ecosystems such as cloud forests. The aim of this work was to evaluate and compare the genetic diversity and population structure of two endemic arboreal mice from Mexican cloud forests that are associated with areas with different levels of impacts from human activities. We performed genotyping-by-sequencing in 47 Habromys schmidlyi and 17 Reithrodontomys wagneri individuals to evaluate genetic diversity and differentiation. In both species, the genetic diversity was low compared to other cricetid species, and we observed different population structure patterns, potentially linked to the different ecological associations. We detected two genetic groups in H. schmidlyi, that is a territorial species present in areas of low incline, while a single genetic group was found in R. wagneri, which forms family groups in areas with steep slopes. Overall, these results highlight how species’ genetic diversity can be differentially impacted depending on differential ecological associations within the same ecosystem. This information is essential for the development of the adequate conservation and management of these species.
Collapse
|
3
|
Joubran SS, Cassin-Sackett L. Genomic resources for an ecologically important rodent, Gunnison’s prairie dogs (Cynomys gunnisoni). CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Castellanos-Morales G, Gámez N, Castillo-Gámez RA, Eguiarte LE. Peripatric speciation of an endemic species driven by Pleistocene climate change: The case of the Mexican prairie dog ( Cynomys mexicanus ). Mol Phylogenet Evol 2016; 94:171-81. [DOI: 10.1016/j.ympev.2015.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 02/02/2023]
|
5
|
Brown NL, Peacock MM, Ritchie ME. Genetic variation and population structure in a threatened species, the Utah prairie dog Cynomys parvidens: the use of genetic data to inform conservation actions. Ecol Evol 2016; 6:426-46. [PMID: 26843928 PMCID: PMC4729250 DOI: 10.1002/ece3.1874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/23/2015] [Indexed: 11/11/2022] Open
Abstract
The Utah prairie dog (Cynomys parvidens), listed as threatened under the United States Endangered Species Act, was the subject of an extensive eradication program throughout its range during the 20th century. Eradication campaigns, habitat destruction/fragmentation/conversion, and epizootic outbreaks (e.g., sylvatic plague) have reduced prairie dog numbers from an estimated 95,000 individuals in the 1920s to approximately 14,000 (estimated adult spring count) today. As a result of these anthropogenic actions, the species is now found in small isolated sets of subpopulations. We characterized the levels of genetic diversity and population genetic structure using 10 neutral nuclear microsatellite loci for twelve populations (native and transplanted) representative of the three management designated "recovery units," found in three distinct biogeographic regions, sampled across the species' range. The results indicate (1) low levels of genetic diversity within colonies (H e = 0.109-0.357; H o = 0.106- 0.313), (2) high levels of genetic differentiation among colonies (global F ST = 0.296), (3) very small genetic effective population sizes, and (4) evidence of genetic bottlenecks. The genetic data reveal additional subdivision such that colonies within recovery units do not form single genotype clusters consistent with recovery unit boundaries. Genotype cluster membership support historical gene flow among colonies in the easternmost West Desert Recovery Unit with the westernmost Pausaugunt colonies and among the eastern Pausaugunt colonies and the Awapa Recovery unit to the north. In order to maintain the long-term viability of the species, there needs to be an increased focus on maintaining suitable habitat between groups of existing populations that can act as connective corridors. The location of future translocation sites should be located in areas that will maximize connectivity, leading to maintenance of genetic variation and evolutionary potential.
Collapse
Affiliation(s)
- Nathanael L. Brown
- Department of BiologySyracuse University107 College Place, LSCSyracuseNew York13224 Mark Ritchie
- Utah Field OfficeUnited States Fish and Wildlife Service1789 N. Wedgewood LaneCedar CityUtah84721
| | - Mary M. Peacock
- Department of Biology MS314University of Nevada Reno1664 North Virginia StreetReno89557Nevada
| | - Mark E. Ritchie
- Department of BiologySyracuse University107 College Place, LSCSyracuseNew York13224 Mark Ritchie
| |
Collapse
|
6
|
Castellanos-Morales G, Ortega J, Castillo-Gámez RA, Sackett LC, Eguiarte LE. Genetic Variation and Structure in Contrasting Geographic Distributions: Widespread Versus Restricted Black-Tailed Prairie Dogs (SubgenusCynomys). J Hered 2015; 106 Suppl 1:478-90. [DOI: 10.1093/jhered/esv021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|