1
|
Navarro-Castilla Á, Hernández MC, Barja I. An Experimental Study in Wild Wood Mice Testing Elemental and Isotope Analysis in Faeces to Determine Variations in Food Intake Amount. Animals (Basel) 2023; 13:ani13071176. [PMID: 37048432 PMCID: PMC10093285 DOI: 10.3390/ani13071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The analysis of carbon and nitrogen elemental (C, N) and isotopic compositions (δ13C, δ15N) in faeces are considered reliable methodologies for the study of diet in wildlife. Here, we tested the suitability of these techniques to detect variations in the amount of food intake. We captured wild wood mice (Apodemus sylvaticus) with Sherman live traps where bait access was initially free, and later it was experimentally limited inside by four different devices to cause intended variations in the amount ingested. The total C and N (%) and stable δ13C and δ15N isotopic values were determined for the bait and in mice faecal samples. Faecal values were lower than bait ones except for N, likely due to animal matter ingested before capture. No significant differences in total C, N and δ13C were found due to individual traits. However, breeding males showed higher δ15N values than breeding females, probably due to differences in energy and protein demands between both sexes during the breeding season. Only δ13C detected food intake variations (≥2 g). Despite further research being needed, these results initially support the potential of δ13C to provide information on the amount ingested, thus being useful to complement trophic ecology studies.
Collapse
Affiliation(s)
- Álvaro Navarro-Castilla
- Eco- and Ethophysiology Lab, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049 Madrid, Spain
- Correspondence:
| | - M. Carmen Hernández
- Eco- and Ethophysiology Lab, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Barja
- Eco- and Ethophysiology Lab, Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
2
|
Bergstrom BJ, Scruggs SB, Vieira EM. Tropical savanna small mammals respond to loss of cover following disturbance: A global review of field studies. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1017361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small-mammal faunas of tropical savannas consist of endemic assemblages of murid rodents, small marsupials, and insectivores on four continents. Small mammals in tropical savannas are understudied compared to other tropical habitats and other taxonomic groups (e.g., Afrotropical megafauna or Neotropical rainforest mammals). Their importance as prey, ecosystem engineers, disease reservoirs, and declining members of endemic biodiversity in tropical savannas compels us to understand the factors that regulate their abundance and diversity. We reviewed field studies published in the last 35 years that examined, mostly experimentally, the effects of varying three primary endogenous disturbances in tropical savanna ecosystems—fire, large mammalian herbivory (LMH), and drought—on abundance and diversity of non-volant small mammals. These disturbances are most likely to affect habitat structure (cover or concealment), food availability, or both, for ground-dwelling small mammalian herbivores, omnivores, and insectivores. Of 63 studies (included in 55 published papers) meeting these criteria from the Afrotropics, Neotropics, and northern Australia (none was found from southern Asia), 29 studies concluded that small mammals responded (mostly negatively) to a loss of cover (mostly from LMH and fire); four found evidence of increased predation on small mammals in lower-cover treatments (e.g., grazed or burned). Eighteen studies concluded a combination of food- and cover-limitation explained small-mammal responses to endogenous disturbances. Only two studies concluded small-mammal declines in response to habitat-altering disturbance were caused by food limitation and not related to cover reduction. Evidence to date indicates that abundance and richness of small savanna mammals, in general (with important exceptions), is enhanced by vegetative cover (especially tall grass, but sometimes shrub cover) as refugia for these prey species amid a “landscape of fear,” particularly for diurnal, non-cursorial, and non-fossorial species. These species have been called “decreasers” in response to cover reduction, whereas a minority of small-mammal species have been shown to be “increasers” or disturbance-tolerant. Complex relationships between endogenous disturbances and small-mammal food resources are important secondary factors, but only six studies manipulated or measured food resources simultaneous to habitat manipulations. While more such studies are needed, designing effective ones for cryptic consumer communities of omnivorous dietary opportunists is a significant challenge.
Collapse
|
3
|
Furtado LO, Felicio GR, Lemos PR, Christianini AV, Martins M, Carmignotto AP. Winners and Losers: How Woody Encroachment Is Changing the Small Mammal Community Structure in a Neotropical Savanna. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.774744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Years of fire suppression, decreases in herbivores, and global climate change have led to shifts in savannas worldwide. Natural open vegetation such as grasslands and shrublands is increasing in wood density, but the effects for small mammals are not well understood. While most of the mammal studies from the Brazilian Cerrado are concentrated in the core area of this large Neotropical savanna, its southern portions are suffering from biome shifting through woody encroachment. Herein, we surveyed a small mammal community from the southeastern boundary of Cerrado (Santa Bárbara Ecological Station) and evaluated the micro and macro environmental variables shaping community structure in order to investigate how the woody encroachment in the last 15 years may have influenced this assemblage. We recorded 17 species of marsupials and rodents along five distinct habitats in a gradient from grasslands to woodlands. Although richness was not affected by microhabitat variables, total and relative abundance varied according to habitat type and in relation to herbaceous, shrub, and tree density. Rodents such as Calomys tener and Clyomys laticeps were positively affected by increasing herb cover, Cerradomys scotti and Oligoryzomys nigripes by shrub cover, while the marsupial Didelphis albiventris had higher association with increasing tree cover. We detected an increase of 27.4% in vegetation density (EVI) between 2003 and 2018 in our study site, and this woody encroachment negatively affected the abundance of some small mammals. The open-area specialists Cryptonanus chacoensis and C. scotti had a decrease in abundance, while D. albiventris and O. nigripes were favored by woody encroachment. Our data suggest that woody encroachment is shifting community composition: small mammals often associated with grasslands and open savannas are likely to be negatively affected by woody encroachment; while species that rely on tree-covered habitats are likely to benefit from an increasing woody landscape. Therefore, forest-dwellers are gradually replacing open-vegetation inhabitants. Active management of open formations (e.g., with prescribed burning) may be needed to maintain Cerrado biodiversity, especially considering the open-area endemics.
Collapse
|
4
|
Teman SJ, Stevens N, Monadjem A, Fletcher RJ, Austin JD, McCleery R. Savanna Rodents’ Selective Removal of an Encroaching Plant’s Seeds Increased With Grass Biomass. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In savannas across the planet, encroaching woody plants are altering ecosystem functions and reshaping communities. Seed predation by rodents may serve to slow the encroachment of woody plants in grasslands and savannas. Our goals for this study were to determine if rodents in an African savanna selectively removed seeds of an encroaching plant and if foraging activity was influenced by the local vegetation structure or by the landscape context. From trials with two species of seeds (encroacher = Dichrostachys cinerea, non-encroaching overstory tree = Senegalia nigrescens) at 64 seed stations, we recorded 1,065 foraging events by seven species of granivorous rodents. We found a strong positive relationship between rodent activity and the number of seeds removed during trials. Foraging events were dominated by rodent seed predators, with <10.6% of events involving a rodent with the potential for secondary dispersal. Rodents selectively removed the seeds of the encroaching species, removing 32.6% more D. cinerea seeds compared to S. nigrescens. Additionally, rodent activity and the number of seeds removed increased at sites with more grass biomass. Our results suggest a potential mechanistic role for rodents in mitigating the spread of woody plants in grass dominated savannas.
Collapse
|
5
|
Hope AG, Gragg SF, Nippert JB, Combe FJ. Consumer roles of small mammals within fragmented native tallgrass prairie. Ecosphere 2021. [DOI: 10.1002/ecs2.3441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Andrew G. Hope
- Division of Biology Kansas State University Manhattan Kansas USA
| | - Sabrina F. Gragg
- Division of Biology Kansas State University Manhattan Kansas USA
| | - Jesse B. Nippert
- Division of Biology Kansas State University Manhattan Kansas USA
| | - Fraser J. Combe
- Division of Biology Kansas State University Manhattan Kansas USA
| |
Collapse
|
6
|
Sergiel A, Barja I, Navarro-Castilla Á, Zwijacz-Kozica T, Selva N. Losing seasonal patterns in a hibernating omnivore? Diet quality proxies and faecal cortisol metabolites in brown bears in areas with and without artificial feeding. PLoS One 2020; 15:e0242341. [PMID: 33180870 PMCID: PMC7660533 DOI: 10.1371/journal.pone.0242341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/01/2020] [Indexed: 11/19/2022] Open
Abstract
Bears are omnivores particularly well-adapted to variations in the nutritional composition, quality and availability of food resources. Artificial feeding practices have been shown to strongly influence diet composition and seasonality, as well as to cause alterations in wintering and movement in brown bears (Ursus arctos). In this study, we investigated seasonal differences (hypophagia vs hyperphagia) in food quality of two brown bear subpopulations in the Polish Carpathians using faecal nitrogen (FN) and carbon (FC) estimates. The subpopulations inhabit areas that differ in artificial feeding practices: no artificial feeding occurs in the western subpopulation (Tatra Mountains), while artificial food targeted to ungulates is provided and used year-round in the eastern subpopulation (Bieszczady Mountains). We also compared these results with faecal cortisol metabolites (FCM) to explore how FN and FC correlate with the hypothalamic-pituitary-adrenal axis activity and if the seasonal patterns are apparent. We found that in Tatra Mts bears fed on significantly higher quality diet, as shown by FN and FC values, and had significantly higher FC levels in hyperphagia, when they accumulate fat reserves for wintering. The pattern in FCM levels for Tatra subpopulation followed the changes in energy intake during the seasons of hypo- and hyperphagia, while in Bieszczady Mts, the area with intensive feeding, no seasonal patterns could be observed. Artificial feeding practices may disrupt nutrient phenology and seasonality, relative to subpopulations with natural diets. We showed that the availability of human-provided foods may alter not only the overall dietary quality, but also hormonal patterns linked to seasonal nutritional requirements. Combining FN, FC and FCM proved to be a useful tool for reconstructing diet quality and related physiological patterns.
Collapse
Affiliation(s)
- Agnieszka Sergiel
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- * E-mail:
| | - Isabel Barja
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Nuria Selva
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
7
|
Diets of mammalian fossil fauna from Kanapoi, northwestern Kenya. J Hum Evol 2020; 140:102338. [DOI: 10.1016/j.jhevol.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
|
8
|
Loggins AA, Shrader AM, Monadjem A, McCleery RA. Shrub cover homogenizes small mammals' activity and perceived predation risk. Sci Rep 2019; 9:16857. [PMID: 31727923 PMCID: PMC6856081 DOI: 10.1038/s41598-019-53071-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
Altered disturbance regimes, increasing atmospheric CO2, and other processes have increased woody cover and homogenized vegetation in savannas across the planet. African savannas with extensive versus minimal woody cover often have vastly different animal communities. However, we lack a clear mechanistic understanding of why animal communities are changing with vegetation structure. Our goal for this study was to understand how vegetation structure in an African savanna shaped the perceived predation risk of small mammals, hence affecting their activity. Using a reciprocal measure of standard giving-up-densities, amount of food eaten, we found sharp declines in rodents' perceived predation risk and increased rodent activity underneath shrub cover. This response was consistent across species; however, species showed subtle differences in their responses to grassy vegetation. Our findings suggest that areas of minimal or extensive shrub cover (shrub encroachment) may be homogenizing rodents' perceptions of predation risk and thus shaping their use of space.
Collapse
Affiliation(s)
- Anne A Loggins
- School of Natural Resources and the Environment, University of Florida, Gainesville, Florida, USA.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Adrian M Shrader
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Ara Monadjem
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa.,Department of Biological Sciences, University of Eswatini, Private Bag 4, Kwaluseni, Eswatini
| | - Robert A McCleery
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa. .,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
9
|
Loggins AA, Monadjem A, Kruger LM, Reichert BE, McCleery RA. Vegetation structure shapes small mammal communities in African savannas. J Mammal 2019. [DOI: 10.1093/jmammal/gyz100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Disturbance by large herbivores, fires, and humans shapes the structure of savannas, altering the amount of woody vegetation and grass. Due to change in the intensity and frequency of these disturbances, savannas are shifting toward grass-dominated or shrub-dominated systems, likely altering animal communities. Small mammals are critical components of savannas, and their distributions likely are affected by these ecosystem-wide changes in vegetative cover. We assessed the responses of small mammals to a gradient of woody cover in low-lying savannas of southeastern Africa. In Kruger National Park (South Africa) and in three nearby reserves (Eswatini), we livetrapped for over 2 years to build multispecies occupancy models that assessed the responses of the small mammal community to grass and woody cover. Overall, whole-community occupancy increased with grass biomass. More species responded positively to woody cover than to grass biomass, but woody cover was associated with reduced occurrence of one species (Mastomys natalensis). Our results suggest that an increase in grass biomass enhances whole-community occupancy of small mammals, but regional diversity is likely to be higher in areas that contain patches of high grass biomass as well as patches of woody cover.
Collapse
Affiliation(s)
- Anne A Loggins
- School of Natural Resources and the Environment, University of Florida, Gainesville, FL, USA
| | - Ara Monadjem
- School of Natural Resources and the Environment, University of Florida, Gainesville, FL, USA
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, Pretoria, South Africa
| | | | - Brian E Reichert
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - Robert A McCleery
- School of Natural Resources and the Environment, University of Florida, Gainesville, FL, USA
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
10
|
Lloyd KJ, Vetter S. Generalist trophic ecology in a changing habitat: The case of the four‐striped mouse in a woody‐encroached savannah. Afr J Ecol 2019. [DOI: 10.1111/aje.12613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kyle J. Lloyd
- Department of Botany Rhodes University Grahamstown South Africa
| | - Susanne Vetter
- Department of Botany Rhodes University Grahamstown South Africa
| |
Collapse
|
11
|
Bergstrom BJ, Sensenig RL, Augustine DJ, Young TP. Searching for cover: soil enrichment and herbivore exclusion, not fire, enhance African savanna small‐mammal abundance. Ecosphere 2018. [DOI: 10.1002/ecs2.2519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Ryan L. Sensenig
- Department of Biological Sciences Goshen College Goshen Indiana 46526 USA
| | - David J. Augustine
- Rangeland Resources Research Unit USDA–Agricultural Research Service Fort Collins Colorado 80526 USA
| | - Truman P. Young
- Department of Plant Sciences University of California Davis California 95616 USA
| |
Collapse
|
12
|
Long RA, Wambua A, Goheen JR, Palmer TM, Pringle RM. Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use. J Anim Ecol 2017; 86:739-748. [PMID: 28342277 DOI: 10.1111/1365-2656.12669] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Abstract
Large mammalian herbivores (LMH) strongly shape the composition and architecture of plant communities. A growing literature shows that negative direct effects of LMH on vegetation frequently propagate to suppress the abundance of smaller consumers. Indirect effects of LMH on the behaviour of these consumers, however, have received comparatively little attention despite their potential ecological significance. We sought to understand (i) how LMH indirectly shape small-mammal habitat use by altering the density and distribution of understorey plants; (ii) how these effects vary with climatic context (here, seasonality in rainfall); and (iii) the extent to which behavioural responses of small mammals are contingent upon small-mammal density. We tested the effects of a diverse LMH community on small-mammal habitat use using 4 years of spatially explicit small-mammal trapping and vegetation data from the UHURU Experiment, a replicated set of LMH exclosures in semi-arid Kenyan savanna. Small-mammal habitat use was positively associated with tree density and negatively associated with bare (unvegetated) patches in all plots and seasons. In the presence of LMH, and especially during the dry season, small mammals consistently selected tree cover and avoided bare patches. In contrast, when LMH were excluded, small mammals were weakly associated with tree cover and did not avoid bare patches as strongly. These behavioural responses of small mammals were largely unaffected by changes in small-mammal density associated with LMH exclusion. Our results show that LMH indirectly affect small-mammal behaviour, and that these effects are influenced by climate and can arise via density-independent mechanisms. This raises the possibility that anthropogenic LMH declines might interact with changing patterns of rainfall to alter small-mammal distribution and behaviour, independent of numerical responses by small mammals to these perturbations. For example, increased rainfall in East Africa (as predicted in many recent climate-model simulations) may relax constraints on small-mammal distribution where LMH are rare or absent, whereas increased aridity and/or drought frequency may tighten them.
Collapse
Affiliation(s)
- Ryan A Long
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alois Wambua
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya
| | - Jacob R Goheen
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya.,Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Todd M Palmer
- Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya.,Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.,Mpala Research Centre, PO Box 555 Rumuruti Road, Nanyuki, Kenya
| |
Collapse
|
13
|
Balčiauskas L, Skipitytė R, Jasiulionis M, Trakimas G, Balčiauskienė L, Remeikis V. The impact of Great Cormorants on biogenic pollution of land ecosystems: Stable isotope signatures in small mammals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:376-383. [PMID: 27179319 DOI: 10.1016/j.scitotenv.2016.04.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Studying the isotopic composition of the hair of two rodent species trapped in the territories of Great Cormorant colonies, we aimed to show that Great Cormorants transfer biogens from aquatic ecosystems to terrestrial ecosystems, and that these substances reach small mammals through the trophic cascade, thus influencing the nutrient balance in the terrestrial ecosystem. Analysis of δ(13)C and δ(15)N was performed on two dominant species of small mammals, Apodemus flavicollis and Myodes glareolus, inhabiting the territories of the colonies. For both species, the values of δ(13)C and δ(15)N were higher in the animals trapped in the territories of the colonies than those in control territories. In the hair of A. flavicollis and M. glareolus, the highest values of δ(15)N (16.31±3.01‰ and 17.86±2.76‰, respectively) were determined in those animals trapped in the biggest Great Cormorant colony. δ(15)N values were age dependent, highest in adult A. flavicollis and M. glareolus and lowest in juvenile animals. For δ(13)C values, age-dependent differences were not registered. δ(15)N values in both small mammal species from the biggest Great Cormorant colony show direct dependence on the intensity of influence. Biogenic pollution is at its strongest in the territories of the colonies with nests, significantly diminishing in the ecotones of the colonies and further in the control zones, where the influence of birds is negligible. Thus, Great Cormorant colonies alter ecosystem functioning by enrichment with biogens, with stable isotope values in small mammals significantly higher in the affected territories.
Collapse
Affiliation(s)
| | - Raminta Skipitytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania.
| | | | - Giedrius Trakimas
- Center for Ecology and Environmental Research, Vilnius University, Vilnius, Lithuania; Institute of Life Sciences and Technology, Daugavpils University, Parades Str. 1a, Daugavpils, LV-5401, Latvia.
| | | | - Vidmantas Remeikis
- Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania.
| |
Collapse
|
14
|
Seamster VA, Waits LP, Macko SA, Shugart HH. Coyote (Canis latrans) mammalian prey diet shifts in response to seasonal vegetation change. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2014; 50:343-360. [PMID: 24999056 DOI: 10.1080/10256016.2014.930037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Drylands typically have strong seasonal variation in rainfall and primary productivity. This study examines the effects of seasonal change in grass-derived resource availability on the base of the food chain of a mammalian predator. Seasonal changes in live grass cover were measured in two vegetation types at the Sevilleta National Wildlife Refuge in central New Mexico, USA. Non-invasive genetic sampling of scat was used to identify individuals in the local coyote (Canis latrans) population. Stable carbon and nitrogen isotope analysis of hair removed from scats of 45 different coyotes was used to assess seasonal variation in the diet of mammalian coyote prey that came from C4 grasses. Live grass cover increased from the spring to the summer and fall; contribution of C4 grasses to the diet of mammalian coyote prey increased from the summer to the fall and was higher in grassland areas. There were significant differences in the seasonal patterns in the prey diet between grassland and shrubland areas.
Collapse
Affiliation(s)
- Virginia A Seamster
- a Department of Environmental Sciences ; University of Virginia ; Charlottesville , VA , USA
| | | | | | | |
Collapse
|
15
|
Gustine DD, Barboza PS, Addison J, Shively R, Oliver L. Isotopic nitrogen in fecal fiber as an indicator of winter diet in caribou and muskoxen. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:625-634. [PMID: 24519825 DOI: 10.1002/rcm.6825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The ratios of stable nitrogen isotopes (δ(15)N values) in excreta have been used to examine aspects of trophic and nutritional ecology across taxa. Nitrogen fractions in feces of herbivores include endogenous (e.g., sloughed intestinal cells, unresorbed digestive secretions, and microbial debris) and dietary sources. For animals such as large herbivores, that have diets and feces with high concentrations of indigestible fiber, endogenous (15)N may constrain the use of fecal δ(15)N values to estimate dietary δ(15)N values and reconstruct diets. METHODS We compared two techniques (detergent and detergent-free) to isolate fractions of plant fibers in the forages of caribou (Rangifer tarandus) and muskoxen (Ovibos moschatus); estimated the discrimination factors between the δ(15)N values of fecal fiber residues and of the diets of captive animals; and used the more effective isotopic tracer of dietary δ(15)N values to examine the relationships between the δ(15)N values of fecal residues and diet composition in several populations of wild caribou and muskoxen throughout North America in winter. RESULTS The detergent-based approach contaminated the fractions of plant fibers in forages and feces with (14)N, whereas the detergent-free method was a good proxy to estimate δ(15)N values of plant fibers (r(2) = 0.92) and provided a better estimate of the fecal-fiber to diet discrimination factor for both species (caribou = 3.6‰; muskoxen = 2.8‰). In wild populations, the δ(15)N values of fecal fibers reflected diet composition in muskoxen (adjusted R(2) = 0.43) but not caribou (adjusted R(2) = 0.06). CONCLUSIONS Contamination from detergent residues prohibited the use of detergent extraction in isolating forage (15)N from endogenous (15)N in the feces of herbivores. Although δ(15)N values in fecal fibers can be used to track dietary δ(15)N values in wild herbivores, discrimination between fecal extracts and diet may vary with the contribution of endogenous nitrogen (N), and, therefore, residual endogenous (15)N in feces may limit dietary reconstructions from fecal δ(15)N values for some large herbivores.
Collapse
Affiliation(s)
- David D Gustine
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK, 99508, USA
| | | | | | | | | |
Collapse
|