1
|
Fitzpatrick SW, Mittan-Moreau C, Miller M, Judson JM. Genetic rescue remains underused for aiding recovery of federally listed vertebrates in the United States. J Hered 2023; 114:354-366. [PMID: 36975379 PMCID: PMC10287150 DOI: 10.1093/jhered/esad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Restoring gene flow among fragmented populations is discussed as a potentially powerful management strategy that could reduce inbreeding depression and cause genetic rescue. Yet, examples of assisted migration for genetic rescue remain sparse in conservation, prompting several outspoken calls for its increased use in genetic management of fragmented populations. We set out to evaluate the extent to which this strategy is underused and to determine how many imperiled species would realistically stand to benefit from genetic rescue, focusing on federally threatened or endangered vertebrate species in the United States. We developed a "genetic rescue suitability index (GR index)" based on concerns about small population problems relative to risks associated with outbreeding depression and surveyed the literature for 222 species. We found that two-thirds of these species were good candidates for consideration of assisted migration for the purpose of genetic rescue according to our suitability index. Good candidate species spanned all taxonomic groups and geographic regions, though species with more missing data tended to score lower on the suitability index. While we do not recommend a prescriptive interpretation of our GR index, we used it here to establish that assisted migration for genetic rescue is an underused strategy. For example, we found in total, "genetic rescue" was only mentioned in 11 recovery plans and has only been implemented in 3 of the species we surveyed. A potential way forward for implementation of this strategy is incorporating genetic rescue as a priority in USFWS recovery documentation. In general, our results suggest that although not appropriate for all imperiled species, many more species stand to benefit from a conservation strategy of assisted migration for genetic rescue than those for which it has previously been considered or implemented.
Collapse
Affiliation(s)
- Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Cinnamon Mittan-Moreau
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Madison Miller
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, United States
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, United States
| | - Jessica M Judson
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Byer NW, Holding ML, Crowell MM, Pierson TW, Dilts TE, Larrucea ES, Shoemaker KT, Matocq MD. Adaptive divergence despite low effective population size in a peripherally isolated population of the pygmy rabbit, Brachylagus idahoensis. Mol Ecol 2021; 30:4173-4188. [PMID: 34166550 DOI: 10.1111/mec.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Local adaptation can occur when spatially separated populations are subjected to contrasting environmental conditions. Historically, understanding the genetic basis of adaptation has been difficult, but increased availability of genome-wide markers facilitates studies of local adaptation in non-model organisms of conservation concern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies on sagebrush for forage and cover. This reliance has led to widespread population declines following reductions in the distribution of sagebrush, leading to geographic separation between populations. In this study, we used >20,000 single nucleotide polymorphisms, genotype-environment association methods, and demographic modeling to examine neutral genetic variation and local adaptation in the pygmy rabbit in Nevada and California. We identified 308 loci as outliers, many of which had functional annotations related to metabolism of plant secondary compounds. Likewise, patterns of spatial variation in outlier loci were correlated with landscape and climatic variables including proximity to streams, sagebrush cover, and precipitation. We found that populations in the Mono Basin of California probably diverged from other Great Basin populations during late Pleistocene climate oscillations, and that this region is adaptively differentiated from other regions in the southern Great Basin despite limited gene flow and low effective population size. Our results demonstrate that peripherally isolated populations can maintain adaptive divergence.
Collapse
Affiliation(s)
- Nathan W Byer
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Matthew L Holding
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Miranda M Crowell
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Thomas E Dilts
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | | | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
3
|
Waters CD, Hard JJ, Fast DE, Knudsen CM, Bosch WJ, Naish KA. Genomic and phenotypic effects of inbreeding across two different hatchery management regimes in Chinook salmon. Mol Ecol 2020; 29:658-672. [PMID: 31957935 DOI: 10.1111/mec.15356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
Genomic approaches permit direct estimation of inbreeding and its effect on fitness. We used genomic-based estimates of inbreeding to investigate their relationship with eight adult traits in a captive-reared Pacific salmonid that is released into the wild. Estimates were also used to determine whether alternative broodstock management approaches reduced risks of inbreeding. Specifically, 1,100 unlinked restriction-site associated (RAD) loci were used to compare pairwise relatedness, derived from a relationship matrix, and individual inbreeding, estimated by comparing observed and expected homozygosity, across four generations in two hatchery lines of Chinook salmon that were derived from the same source. The lines are managed as "integrated" with the founding wild stock, with ongoing gene flow, and as "segregated" with no gene flow. While relatedness and inbreeding increased in the first generation of both lines, possibly due to population subdivision caused by hatchery initiation, the integrated line had significantly lower levels in some subsequent generations (relatedness: F2 -F4 ; inbreeding F2 ). Generally, inbreeding was similar between the lines despite large differences in effective numbers of breeders. Inbreeding did not affect fecundity, reproductive effort, return timing, fork length, weight, condition factor, and daily growth coefficient. However, it delayed spawn timing by 1.75 days per one standard deviation increase in F (~0.16). The results indicate that integrated management may reduce inbreeding but also suggest that it is relatively low in a small, segregated hatchery population that maximized number of breeders. Our findings demonstrate the utility of genomics to monitor inbreeding under alternative management strategies in captive breeding programs.
Collapse
Affiliation(s)
- Charles D Waters
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey J Hard
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | | | | | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Larrucea ES, Robinson ML, Rippert JS, Matocq MD. Genetically distinct populations of the pygmy rabbit (Brachylagus idahoensis) in the Mono Basin of California. J Mammal 2018. [DOI: 10.1093/jmammal/gyx187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Jennifer S Rippert
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
5
|
Milling CR, Rachlow JL, Johnson TR, Forbey JS, Shipley LA. Seasonal variation in behavioral thermoregulation and predator avoidance in a small mammal. Behav Ecol 2017. [DOI: 10.1093/beheco/arx084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
6
|
DeMay SM, Becker PA, Rachlow JL, Waits LP. Genetic monitoring of an endangered species recovery: demographic and genetic trends for reintroduced pygmy rabbits (Brachylagus idahoensis). J Mammal 2017. [DOI: 10.1093/jmammal/gyw197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
7
|
Demay SM, Becker PA, Waits LP, Johnson TR, Rachlow JL. Consequences for conservation: population density and genetic effects on reproduction of an endangered lagomorph. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:784-795. [PMID: 27411250 DOI: 10.1890/15-0931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding reproduction and mating systems is important for managers tasked with conserving vulnerable species. Genetic tools allow biologists to investigate reproduction and mating systems with high resolution and are particularly useful for species that are otherwise difficult to study in their natural environments. We conducted parentage analyses using 19 nuclear DNA microsatellite loci to assess the influence of population density, genetic diversity, and ancestry on reproduction, and to examine the mating system of pygmy rabbits (Brachylagus idahoensis) bred in large naturalized enclosures for the reintroduction and recovery of the endangered distinct population in central Washington, USA. Reproductive output for females and males decreased as population density and individual homozygosity increased. We identified an interaction indicating that male reproductive output decreased as genetic diversity declined at high population densities, but there was no effect at low densities. Males with high amounts (> 50%) of Washington ancestry had higher reproductive output than the other ancestry groups, while reproductive output was decreased for males with high northern Utah/Wyoming ancestry and females with high Oregon/Nevada ancestry. Females and males bred with an average of 3.8 and 3.6 mates per year, respectively, and we found no evidence of positive or negative assortative mating with regards to ancestry. Multiple paternity was confirmed in 81% of litters, and we report the first documented cases of juvenile breeding by pygmy rabbits. This study demonstrates how variation in population density, genetic diversity, and ancestry impact fitness for an endangered species being bred for conservation. Our results advance understanding of basic life history characteristics for a cryptic species that is difficult to study in the wild and provide lessons for managing populations of vulnerable species in captive and free-ranging populations.
Collapse
|
8
|
Wisely SM, Ryder OA, Santymire RM, Engelhardt JF, Novak BJ. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. J Hered 2015; 106:581-92. [PMID: 26304983 PMCID: PMC4567841 DOI: 10.1093/jhered/esv041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) could benefit recovery programs of critically endangered species but must be weighed with the risks of failure. To weigh the risks and benefits, a decision-making process that evaluates progress is needed. Experiments that evaluate the efficiency and efficacy of blastocyst, fetal, and post-parturition development are necessary to determine the success or failure or species-specific iSCNT programs. Here, we use the black-footed ferret (Mustela nigripes) as a case study for evaluating this emerging biomedical technology as a tool for genetic restoration. The black-footed ferret has depleted genetic variation yet genome resource banks contain genetic material of individuals not currently represented in the extant lineage. Thus, genetic restoration of the species is in theory possible and could help reduce the persistent erosion of genetic diversity from drift. Extensive genetic, genomic, and reproductive science tools have previously been developed in black-footed ferrets and would aid in the process of developing an iSCNT protocol for this species. Nonetheless, developing reproductive cloning will require years of experiments and a coordinated effort among recovery partners. The information gained from a well-planned research effort with the goal of genetic restoration via reproductive cloning could establish a 21st century model for evaluating and implementing conservation breeding that would be applicable to other genetically impoverished species.
Collapse
Affiliation(s)
- Samantha M Wisely
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak).
| | - Oliver A Ryder
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - Rachel M Santymire
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - John F Engelhardt
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| | - Ben J Novak
- From the Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, Florida, 32611 USA (Wisely); San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Road, San Diego Zoo Global, Escondido, California, 92027 USA (Ryder); Davee Center for Epidemiology and Endocrinology, 2001 North Clark Street, Lincoln Park Zoo, Chicago, Illinois, 60614 USA (Santymire); Department of Anatomy and Cell Biology, 51 Newton Road, University of Iowa, Iowa City, Iowa, 52242 USA (Engelhardt); and Revive & Restore, The Long Now Foundation, 2 Marina Boulevard Building A, San Francisco, California, 94123 USA (Novak)
| |
Collapse
|
9
|
Demay SM, Rachlow JL, Waits LP, Becker PA. Comparing telemetry and fecal dna sampling methods to quantify survival and dispersal of juvenile pygmy rabbits. WILDLIFE SOC B 2015. [DOI: 10.1002/wsb.521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Janet L. Rachlow
- Department of Fish and Wildlife Sciences; University of Idaho; Moscow ID 83844 USA
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences; Environmental Science Program; University of Idaho; Moscow ID 83844 USA
| | - Penny A. Becker
- Washington Department of Fish and Wildlife; Olympia; WA 98501 USA
| |
Collapse
|