1
|
McKinley K, Tsaousis AD, Rückert S. Description and prevalence of gregarines infecting the amphipod Gammarus pulex, in the Water of Leith, Scotland, UK. Eur J Protistol 2024; 94:126084. [PMID: 38692224 DOI: 10.1016/j.ejop.2024.126084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Gregarines are symbiotic protists that are found in a broad spectrum of invertebrates, including insects, crustaceans, and annelids. Among these the globally distributed amphipod Gammarus pulex is one of the earliest recognized hosts for aquatic gregarines and is prevalent among macroinvertebrates in freshwater environments. In this study, samples of G. pulex were collected in the Water of Leith river, Scotland, UK. Gregarines were identified using light and scanning electron microscopy as well as standard molecular techniques. We identified three septate eugregarine symbionts-Heliospora longissima, Cephaloidophora gammari, and the here newly characterized Cephaloidophora conus n. sp. (formerly Cephaloidophora sp.) associated with Gammarus pulex in the Water of Leith. Prevalences for identified gregarine species were calculated and seasonal dynamics of gregarine infections/colonization were analyzed. Prevalences were highest in autumn and spring reaching almost 50 %. While the two Cephaloidophora species showed similar colonization patterns, the prevalence of Heliospora showed an opposite trend. Identifying gregarine infection/colonization patterns is one step towards better understanding the gregarine-host relationship, as well as possible impacts of the gregarines on their hosts.
Collapse
Affiliation(s)
- Kevin McKinley
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK; Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, England, UK; Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK
| | - Anastasios D Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, Kent, England, UK
| | - Sonja Rückert
- Department of Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, UK.
| |
Collapse
|
2
|
Grunberg RL, Halliday FW, Heckman RW, Joyner BN, O’Keeffe KR, Mitchell CE. Disease decreases variation in host community structure in an old-field grassland. PLoS One 2023; 18:e0293495. [PMID: 37889914 PMCID: PMC10610459 DOI: 10.1371/journal.pone.0293495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Disease may drive variation in host community structure by modifying the interplay of deterministic and stochastic processes that shape communities. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When communities have higher levels of disease and disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the seasonal duration of fungicide treatment and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. These changes in richness and aboveground biomass were consistent across years despite changes in structure of the plant communities over the experiment's three years. Importantly, disease reduction amplified host community variation, suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure.
Collapse
Affiliation(s)
- Rita L. Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fletcher W. Halliday
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert W. Heckman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Brooklynn N. Joyner
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kayleigh R. O’Keeffe
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Grunberg RL, Anderson DM. Host Energetics Explain Variation in Parasite Productivity across Hosts and Ecosystems. Am Nat 2021; 199:266-276. [DOI: 10.1086/717430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rita L. Grunberg
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901
| | - David M. Anderson
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
4
|
Hiillos A, Thonig A, Knott KE. Droplet digital PCR as a tool for investigating dynamics of cryptic symbionts. Ecol Evol 2021; 11:17381-17396. [PMID: 34938515 PMCID: PMC8668802 DOI: 10.1002/ece3.8372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interactions among symbiotic organisms and their hosts are major drivers of ecological and evolutionary processes. Monitoring the infection patterns among natural populations and identifying factors affecting these interactions are critical for understanding symbiont-host relationships. However, many of these interactions remain understudied since the knowledge about the symbiont species is lacking, which hinders the development of appropriate tools. In this study, we developed a digital droplet PCR (ddPCR) assay based on apicomplexan COX1 gene to detect an undescribed agamococcidian symbiont. We show that the method gives precise and reproducible results and enables detecting cryptic symbionts in low target concentration. We further exemplify the assay's use to survey seasonally sampled natural host (Pygospio elegans) populations for symbiont infection dynamics. We found that symbiont prevalence differs spatially but does not show seasonal changes. Infection load differed between populations and was low in spring and significantly increased towards fall in all populations. We also found that the symbiont prevalence is affected by host length and population density. Larger hosts were more likely to be infected, and high host densities were found to have a lower probability of infection. The observed variations could be due to characteristics of both symbiont and host biology, especially the seasonal variation in encounter rates. Our findings show that the developed ddPCR assay is a robust tool for detecting undescribed symbionts that are otherwise difficult to quantify, enabling further insight into the impact cryptic symbionts have on their hosts.
Collapse
Affiliation(s)
- Anna‐Lotta Hiillos
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anne Thonig
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| | - Karelyn Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
5
|
Shaw JC, Henriksen EH, Knudsen R, Kuhn JA, Kuris AM, Lafferty KD, Siwertsson A, Soldánová M, Amundsen P. High parasite diversity in the amphipod Gammarus lacustris in a subarctic lake. Ecol Evol 2020; 10:12385-12394. [PMID: 33209296 PMCID: PMC7663964 DOI: 10.1002/ece3.6869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/02/2023] Open
Abstract
Amphipods are often key species in aquatic food webs due to their functional roles in the ecosystem and as intermediate hosts for trophically transmitted parasites. Amphipods can also host many parasite species, yet few studies address the entire parasite community of a gammarid population, precluding a more dynamic understanding of the food web. We set out to identify and quantify the parasite community of Gammarus lacustris to understand the contributions of the amphipod and its parasites to the Takvatn food web. We identified seven parasite taxa: a direct life cycle gregarine, Rotundula sp., and larval stages of two digenean trematode genera, two cestodes, one nematode, and one acanthocephalan. The larval parasites use either birds or fishes as final hosts. Bird parasites predominated, with trematode Plagiorchis sp. having the highest prevalence (69%) and mean abundance (2.7). Fish parasites were also common, including trematodes Crepidostomum spp., nematode Cystidicola farionis, and cestode Cyathocephalus truncatus (prevalences 13, 6, and 3%, respectively). Five parasites depend entirely on G. lacustris to complete their life cycle. At least 11.4% of the overall parasite diversity in the lake was dependent on G. lacustris, and 16% of the helminth diversity required or used the amphipod in their life cycles. These dependencies reveal that in addition to being a key prey item in subarctic lakes, G. lacustris is also an important host for maintaining parasite diversity in such ecosystems.
Collapse
Affiliation(s)
- Jenny C. Shaw
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Eirik H. Henriksen
- Department of Arctic and Marine BiologyFaculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
| | - Rune Knudsen
- Department of Arctic and Marine BiologyFaculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
| | - Jesper A. Kuhn
- Department of Arctic and Marine BiologyFaculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
| | - Armand M. Kuris
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCAUSA
| | - Kevin D. Lafferty
- Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraCAUSA
- Western Ecological ResearchU.S. Geological SurveySanta BarbaraCAUSA
| | - Anna Siwertsson
- Department of Arctic and Marine BiologyFaculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
- Institute of Marine ResearchEcosystem Processes Research GroupTromsøNorway
| | - Miroslava Soldánová
- Institute of Parasitology, Biology CentreCzech Academy of SciencesČeské BudějoviceCzech Republic
| | - Per‐Arne Amundsen
- Department of Arctic and Marine BiologyFaculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
6
|
Abstract
Parasites directly and indirectly influence the important interactions among hosts such as competition and predation through modifications of behaviour, reproduction and survival. Such impacts can affect local biodiversity, relative abundance of host species and structuring of communities and ecosystems. Despite having a firm theoretical basis for the potential effects of parasites on ecosystems, there is a scarcity of experimental data to validate these hypotheses, making our inferences about this topic more circumstantial. To quantitatively test parasites' role in structuring host communities, we set up a controlled, multigenerational mesocosm experiment involving four sympatric freshwater crustacean species that share up to four parasite species. Mesocosms were assigned to either of two different treatments, low or high parasite exposure. We found that the trematode Maritrema poulini differentially influenced the population dynamics of these hosts. For example, survival and recruitment of the amphipod Paracalliope fluviatilis were dramatically reduced compared to other host species, suggesting that parasites may affect their long-term persistence in the community. Relative abundances of crustacean species were influenced by parasites, demonstrating their role in host community structure. As parasites are ubiquitous across all communities and ecosystems, we suggest that the asymmetrical effects we observed are likely widespread structuring forces.
Collapse
|
7
|
Bojko J, Ovcharenko M. Pathogens and other symbionts of the Amphipoda: taxonomic diversity and pathological significance. DISEASES OF AQUATIC ORGANISMS 2019; 136:3-36. [PMID: 31575832 DOI: 10.3354/dao03321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With over 10000 species of Amphipoda currently described, this order is one of the most diverse groups of freshwater and marine Crustacea. Members of this group are globally distributed, and many are keystone species and ecosystem engineers within their respective ecologies. As with most organisms, disease is a key factor that can alter population size, behaviour, survival, invasion potential and physiology of amphipod hosts. This review explores symbiont diversity and pathology in amphipods by coalescing a range of current and historical literature to provide the first full review of our understanding of amphipod disease. The review is broken into 2 parts. The first half explores amphipod microparasites, which include data pertaining to viruses, bacteria, fungi, oomycetes, microsporidians, dinoflagellates, myxozoans, ascetosporeans, mesomycetozoeans, apicomplexans and ciliophorans. The second half reports the metazoan macroparasites of Amphipoda, including rotifers, trematodes, acanthocephalans, nematodes, cestodes and parasitic Crustacea. In all cases we have endeavoured to provide a complete list of known species that cause disease in amphipods, while also exploring the effects of parasitism. Although our understanding of disease in amphipods requires greater research efforts to better define taxonomic diversity and host effects of amphipod symbionts, research to date has made huge progress in cataloguing and experimentally determining the effects of disease upon amphipods. For the future, we suggest a greater focus on developing model systems that use readily available amphipods and diseases, which can be comparable to the diseases in other Crustacea that are endangered, economically important or difficult to house.
Collapse
Affiliation(s)
- Jamie Bojko
- University of Florida, School of Forest Resources and Conservation, Aquatic Pathobiology Laboratory, 2173 Mowry Road, Gainesville, Florida 32611, USA
| | | |
Collapse
|