1
|
da Silva CF, Batista DDGJ, de Araújo JS, Cunha-Junior EF, Stephens CE, Banerjee M, Farahat AA, Akay S, Fisher MK, Boykin DW, Soeiro MDNC. Phenotypic evaluation and in silico ADMET properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1095-1105. [PMID: 28435221 PMCID: PMC5388221 DOI: 10.2147/dddt.s120618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arylimidamides (AIAs), previously termed as reversed amidines, present a broad spectrum of activity against intracellular microorganisms. In the present study, three novel AIAs were evaluated in a mouse model of Trypanosoma cruzi infection, which is the causative agent of Chagas disease. The bis-AIAs DB1957, DB1959 and DB1890 were chosen based on a previous screening of their scaffolds that revealed a very promising trypanocidal effect at nanomolar range against both the bloodstream trypomastigotes (BTs) and the intracellular forms of the parasite. This study focused on both mesylate salts DB1957 and DB1959 besides the hydrochloride salt DB1890. Our current data validate the high activity of these bis-AIA scaffolds that exhibited EC50 (drug concentration that reduces 50% of the number of the treated parasites) values ranging from 14 to 78 nM and 190 to 1,090 nM against bloodstream and intracellular forms, respectively, also presenting reasonable selectivity indexes and no mutagenicity profile predicted by in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET). Acute toxicity studies using murine models revealed that these AIAs presented only mild toxic effects such as reversible abdominal contractions and ruffled fur. Efficacy assays performed with Swiss mice infected with the Y strain revealed that the administration of DB1957 for 5 consecutive days, with the first dose given at parasitemia onset, reduced the number of BTs at the peak, ranging between 21 and 31% of decrease. DB1957 was able to provide 100% of animal survival, while untreated animals showed 70% of mortality rates. DB1959 and DB1890B did not reduce circulating parasitism but yielded >80% of survival rates.
Collapse
Affiliation(s)
| | | | | | | | - Chad E Stephens
- Department of Chemistry and Physics, Augusta University, Augusta
| | - Moloy Banerjee
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Senol Akay
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Mary K Fisher
- Department of Chemistry and Physics, Augusta University, Augusta
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
2
|
4-amino bis-pyridinium derivatives as novel antileishmanial agents. Antimicrob Agents Chemother 2014; 58:4103-12. [PMID: 24798287 DOI: 10.1128/aac.02481-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antileishmanial activity of a series of bis-pyridinium derivatives that are analogues of pentamidine have been investigated, and all compounds assayed were found to display activity against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania major, with 50% effective concentrations (EC50s) lower than 1 μM in most cases. The majority of compounds showed similar behavior in both Leishmania species, being slightly more active against L. major amastigotes. However, compound VGP-106 {1,1'-(biphenyl-4,4'-diylmethylene)bis[4-(4-bromo-N-methylanilino)pyridinium] dibromide} exhibited significantly higher activity against L. donovani amastigotes (EC50, 0.86 ± 0.46 μM) with a lower toxicity in THP-1 cells (EC50, 206.54 ± 9.89 μM). As such, VGP-106 was chosen as a representative compound to further elucidate the mode of action of this family of inhibitors in promastigote forms of L. donovani. We have determined that uptake of VGP-106 in Leishmania is a temperature-independent process, suggesting that the compound crosses the parasite membrane by diffusion. Transmission electron microscopy analysis showed a severe mitochondrial swelling in parasites treated with compound VGP-106, which induces hyperpolarization of the mitochondrial membrane potential and a significant decrease of intracellular free ATP levels due to the inhibition of ATP synthesis. Additionally, we have confirmed that VGP-106 induces mitochondrial ROS production and an increase in intracellular Ca(2+) levels. All these molecular events can activate the apoptotic process in Leishmania; however, propidium iodide assays gave no indication of DNA fragmentation. These results underline the potency of compound VGP-106, which may represent a new avenue for the development of novel antileishmanial compounds.
Collapse
|
3
|
In vitro and in vivo studies of the biological activity of novel arylimidamides against Trypanosoma cruzi. Antimicrob Agents Chemother 2014; 58:4191-5. [PMID: 24590476 DOI: 10.1128/aac.01403-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fifteen novel arylimidamides (AIAs) (6 bis-amidino and 9 mono-amidino analogues) were assayed against Trypanosoma cruzi in vitro and in vivo. All the bis-AIAs were more effective than the mono-AIAs, and two analogues, DB1967 and DB1989, were further evaluated in vivo. Although both of them reduced parasitemia, protection against mortality was not achieved. Our results show that the number of amidino-terminal units affects the efficacy of arylimidamides against T. cruzi.
Collapse
|
4
|
Simple colorimetric trypanothione reductase-based assay for high-throughput screening of drugs against Leishmania intracellular amastigotes. Antimicrob Agents Chemother 2013; 58:527-35. [PMID: 24189262 DOI: 10.1128/aac.00751-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Critical to the search for new anti-leishmanial drugs is the availability of high-throughput screening (HTS) methods to test chemical compounds against the relevant stage for pathogenesis, the intracellular amastigotes. Recent progress in automated microscopy and genetic recombination has produced powerful tools for drug discovery. Nevertheless, a simple and efficient test for measuring drug activity against Leishmania clinical isolates is lacking. Here we describe a quantitative colorimetric assay in which the activity of a Leishmania native enzyme is used to assess parasite viability. Enzymatic reduction of disulfide trypanothione, monitored by a microtiter plate reader, was used to quantify the growth of Leishmania parasites. An excellent correlation was found between the optical density at 412 nm and the number of parasites inoculated. Pharmacological validation of the assay was performed against the conventional alamarBlue method for promastigotes and standard microscopy for intracellular amastigotes. The activity of a selected-compound panel, including several anti-leishmanial reference drugs, demonstrated high consistency between the newly developed assay and the reference method and corroborated previously published data. Quality assessment with standard measures confirmed the robustness and reproducibility of the assay, which performed in compliance with HTS requirements. This simple and rapid assay provides a reliable, accurate method for screening anti-leishmanial agents, with high throughput. The basic equipment and manipulation required to perform the assay make it easy to implement, simplifying the method for scoring inhibitor assays.
Collapse
|
5
|
Banerjee M, Farahat AA, Kumar A, Wenzler T, Brun R, Munde MM, Wilson WD, Zhu X, Werbovetz KA, Boykin DW. Synthesis, DNA binding and antileishmanial activity of low molecular weight bis-arylimidamides. Eur J Med Chem 2012; 55:449-54. [PMID: 22840696 DOI: 10.1016/j.ejmech.2012.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
The effects of reducing the molecular weight of the antileishmanial compound DB766 on DNA binding affinity, antileishmanial activity and cytotoxicity are reported. The bis-arylimidamides were prepared by the coupling of aryl S-(2-naphthylmethyl)thioimidates with the corresponding amines. Specifically, we have prepared new series of bis-arylimidamides which include 3a, 3b, 6, 9a, 9b, 9c, 13, and 18. Three compounds 9a, 9c, and 18 bind to DNA with similar or moderately lower affinity to that of DB766, the rest of these compounds either show quite weak binding or no binding at all to DNA. Compounds 9a, 9c, and 13 were the most active against Leishmania amazonensis showing IC(50) values of less than 1 μM, so they were screened against intracellular Leishmania donovani, showing outstanding activity with IC(50) values of 25-79 nM. Despite exhibiting little in vitro cytotoxicity these three compounds were quite toxic to mice.
Collapse
Affiliation(s)
- Moloy Banerjee
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The trypanocidal activity of amidine compounds does not correlate with their binding affinity to Trypanosoma cruzi kinetoplast DNA. Antimicrob Agents Chemother 2011; 55:4765-73. [PMID: 21807972 DOI: 10.1128/aac.00229-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to limited efficacy and considerable toxicity, the therapy for Chagas' disease is far from being ideal, and thus new compounds are desirable. Diamidines and related compounds such as arylimidamides have promising trypanocidal activity against Trypanosoma cruzi. To better understand the mechanism of action of these heterocyclic cations, we investigated the kinetoplast DNA (kDNA) binding properties and trypanocidal efficacy against T. cruzi of 13 compounds. Four diamidines (DB75, DB569, DB1345, and DB829), eight arylimidamides (DB766, DB749, DB889, DB709, DB613, DB1831, DB1852, and DB2002), and one guanylhydrazone (DB1080) were assayed in thermal denaturation (T(m)) and circular dichroism (CD) studies using whole purified T. cruzi kDNA and a conserved synthetic parasite sequence. The overall CD spectra using the whole kDNA were similar to those found for the conserved sequence and were indicative of minor groove binding. Our findings showed that some of the compounds that exhibited the highest trypanocidal activities (e.g., DB766) caused low or no change in the T(m) measurements. However, while some active compounds, such as DB766, induced profound alterations of kDNA topology, others, like DB1831, although effective, did not result in altered T(m) and CD measurements. Our data suggest that the strong affinity of amidines with kDNA per se is not sufficient to generate and trigger their trypanocidal activity. Cell uptake differences and possibly distinct cellular targets need to be considered in the final evaluation of the mechanisms of action of these compounds.
Collapse
|
7
|
de Castro SL, Batista DGJ, Batista MM, Batista W, Daliry A, de Souza EM, Menna-Barreto RFS, Oliveira GM, Salomão K, Silva CF, Silva PB, Soeiro MDNC. Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones. Mol Biol Int 2011; 2011:306928. [PMID: 22091400 PMCID: PMC3195292 DOI: 10.4061/2011/306928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 01/31/2023] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.
Collapse
Affiliation(s)
- Solange L. de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Marcos M. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Wanderson Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Anissa Daliry
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Elen M. de Souza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Gabriel M. Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Cristiane F. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Patricia B. Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Soeiro MDNC, de Castro SL. Screening of Potential anti-Trypanosoma cruzi Candidates: In Vitro and In Vivo Studies. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:21-30. [PMID: 21629508 PMCID: PMC3103897 DOI: 10.2174/1874104501105010021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/21/2010] [Accepted: 05/28/2010] [Indexed: 01/21/2023]
Abstract
Chagas disease (CD), caused by the intracellular protozoan Trypanosoma cruzi, is a parasitic illness endemic in Latin America. In the centennial after CD discovery by Carlos Chagas (1909), although it still represents an important public health problem in these affected areas, the existing chemotherapy, based on benznidazole and nifurtimox (both introduced more than four decades ago), is far from being considered ideal due to substantial toxicity, variable effect on different parasite stocks and well-known poor activity on the chronic phase. CD is considered one of the major "neglected" diseases of the world, as commercial incentives are very limited to guarantee investments for developing and discovering novel drugs. In this context, our group has been pursuing, over the last years, the efficacy, selectivity, toxicity, cellular targets and mechanisms of action of new potential anti-T. cruzi candidates screened from an in-house compound library of different research groups in the area of medicinal chemistry. A brief review regarding these studies will be discussed, mainly related to the effect on T. cruzi of (i) diamidines and related compounds, (ii) natural naphthoquinone derivatives, and (iii) megazol derivatives.
Collapse
Affiliation(s)
| | - Solange Lisboa de Castro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
9
|
Arylimidamide DB766, a potential chemotherapeutic candidate for Chagas' disease treatment. Antimicrob Agents Chemother 2010; 54:2940-52. [PMID: 20457822 DOI: 10.1128/aac.01617-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease, a neglected tropical illness for which current therapy is unsatisfactory, is caused by the intracellular parasite Trypanosoma cruzi. The goal of this work is to investigate the in vitro and in vivo effects of the arylimidamide (AIA) DB766 against T. cruzi. This arylimidamide exhibits strong trypanocidal activity and excellent selectivity for bloodstream trypomastigotes and intracellular amastigotes (Y strain), giving IC(50)s (drug concentrations that reduce 50% of the number of the treated parasites) of 60 and 25 nM, respectively. DB766 also exerts striking effects upon different parasite stocks, including those naturally resistant to benznidazole, and displays higher activity in vitro than the reference drugs. By fluorescent and transmission electron microscopy analyses, we found that this AIA localizes in DNA-enriched compartments and induces considerable damage to the mitochondria. DB766 effectively reduces the parasite load in the blood and cardiac tissue and presents efficacy similar to that of benznidazole in mouse models of T. cruzi infection employing the Y and Colombian strains, using oral and intraperitoneal doses of up to 100 mg/kg/day that were given after the establishment of parasite infection. This AIA ameliorates electrocardiographic alterations, reduces hepatic and heart lesions induced by the infection, and provides 90 to 100% protection against mortality, which is similar to that provided by benznidazole. Our data clearly show the trypanocidal efficacy of DB766, suggesting that this AIA may represent a new lead compound candidate to Chagas' disease treatment.
Collapse
|
10
|
Abstract
Arylimidamides (AIAs) represent a new class of molecules that exhibit potent antileishmanial activity (50% inhibitory concentration [IC(50)], <1 microM) against both Leishmania donovani axenic amastigotes and intracellular Leishmania, the causative agent for human visceral leishmaniasis (VL). A systematic lead discovery program was employed to characterize in vitro and in vivo antileishmanial activities, pharmacokinetics, mutagenicities, and toxicities of two novel AIAs, DB745 and DB766. They were exceptionally active (IC(50) < or = 0.12 microM) against intracellular L. donovani, Leishmania amazonensis, and Leishmania major and did not exhibit mutagenicity in an Ames screen. DB745 and DB766, given orally, produced a dose-dependent inhibition of liver parasitemia in two efficacy models, L. donovani-infected mice and hamsters. Most notably, DB766 (100 mg/kg of body weight/day for 5 days) reduced liver parasitemia in mice and hamsters by 71% and 89%, respectively. Marked reduction of parasitemia in the spleen (79%) and bone marrow (92%) of hamsters was also observed. Furthermore, these compounds distributed to target tissues (liver and spleen) and had a moderate oral bioavailability (up to 25%), a large volume of distribution, and an elimination half-life ranging from 1 to 2 days in mice. In a repeat-dose toxicity study of mice, there was no indication of liver or kidney toxicity for DB766 from serum chemistries, although mild hepatic cell eosinophilia, hypertrophy, and fatty changes were noted. These results demonstrated that arylimidamides are a promising class of molecules that possess good antileishmanial activity and desirable pharmacokinetics and should be considered for further preclinical development as an oral treatment for VL.
Collapse
|
11
|
Soeiro MDNC, Dantas AP, Daliry A, Silva CFD, Batista DGJ, de Souza EM, Oliveira GM, Salomão K, Batista MM, Pacheco MGO, Silva PBD, Santa-Rita RM, Barreto RFSM, Boykin DW, Castro SLD. Experimental chemotherapy for Chagas disease: 15 years of research contributions from in vivo and in vitro studies. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:301-10. [PMID: 19753489 DOI: 10.1590/s0074-02762009000900040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/08/2009] [Indexed: 11/22/2022] Open
Abstract
Chagas disease, which is caused by the intracellular parasite Trypanosoma cruzi, is a neglected illness with 12-14 million reported cases in endemic geographic regions of Latin America. While the disease still represents an important public health problem in these affected areas, the available therapy, which was introduced more than four decades ago, is far from ideal due to its substantial toxicity, its limited effects on different parasite stocks, and its poor activity during the chronic phase of the disease. For the past 15 years, our group, in collaboration with research groups focused on medicinal chemistry, has been working on experimental chemotherapies for Chagas disease, investigating the biological activity, toxicity, selectivity and cellular targets of different classes of compounds on T. cruzi. In this report, we present an overview of these in vitro and in vivo studies, focusing on the most promising classes of compounds with the aim of contributing to the current knowledge of the treatment of Chagas disease and aiding in the development of a new arsenal of candidates with anti-T. cruzi efficacy.
Collapse
|
12
|
Rahimian M, Kumar A, Say M, Bakunov SA, Boykin DW, Tidwell RR, Wilson WD. Minor groove binding compounds that jump a gc base pair and bind to adjacent AT base pair sites. Biochemistry 2009; 48:1573-83. [PMID: 19173620 DOI: 10.1021/bi801944g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most A/T specific heterocyclic diamidine derivatives need at least four A/T base pairs for tight binding to the DNA minor groove. Addition of a GC base pair to A/T sequences typically causes a large decrease in binding constant. The ability to target biologically important sequences of DNA could be significantly increased if compounds that could recognize A/T sites with an intervening GC base pair could be designed. The kinetoplast DNA sequence of parasitic microorganisms, for example, contains numerous three A/T binding sites that are separated by a single G. A series of compounds were prepared to target the AAAGTTT sequence as a model system for discovery of "G-jumpers". The new synthetic compounds have two aromatic-amidine groups for A/T recognition, and these are connected through an oxy-methylene linker to cross the GC. CD experiments indicated a minor groove binding mode, as expected, for these compounds. T(max), surface plasmon resonance, and isothermal titration calorimetry experiments revealed 1:1 binding to the AAAGTTT sequence with an affinity that depends on compound structure. Benzimidazole derivatives gave the strongest binding and had generally good solution properties. The binding affinities to the classical AATT sequence were similar to that for AAAGTTT for these extended compounds, but binding was weaker to the AAAGCTTT sequence with two intervening GC base pairs. Binding to both AAAGTTT and AATT was enthalpy driven for strong binding benzimidazole derivatives.
Collapse
Affiliation(s)
- Maryam Rahimian
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302, USA
| | | | | | | | | | | | | |
Collapse
|