1
|
Zhang L, Wang L, Xiang S, Hu Y, Zhao S, Liao Y, Zhu Z, Wu X. CRISPR/Cas9-mediated gene knockout of Sj16 in Schistosoma japonicum eggs upregulates the host-to-egg immune response. FASEB J 2022; 36:e22615. [PMID: 36273308 DOI: 10.1096/fj.202200600rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an important, neglected tropical disease. Schistosoma japonicum can evade host attacks by regulating the host's immunity, causing continuous infection. However, interactions between the host's immune system and S. japonicum are unclear. Our previous research found that the Sj16 protein isolated from S. japonicum has an anti-inflammatory effect in the host. However, the role of Sj16 in the regulation of host immunity in S. japonicum infection is not clear. Here, we applied the CRISPR/Cas9 technique to knockout Sj16 in S. japonicum eggs and investigated the effect of Sj16 in regulating host immunity. We found egg viability decreased after Sj16 knockout. In addition, we found granulomatous inflammation increased, the T-cell immune response enhanced and the immune microenvironment changed in mice model injected with Sj16-knockout eggs by tail vein. These findings suggested that S. japonicum could regulate host immunity through Sj16 to evade the host immune attack and cause continuous infection. In addition, we confirmed the application of CRISPR/Cas9-mediated gene reprogramming for functional genomics in S. japonicum.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Shiels J, Cwiklinski K, Alvarado R, Thivierge K, Cotton S, Gonzales Santana B, To J, Donnelly S, Taggart CC, Weldon S, Dalton JP. Schistosoma mansoni immunomodulatory molecule Sm16/SPO-1/SmSLP is a member of the trematode-specific helminth defence molecules (HDMs). PLoS Negl Trop Dis 2020; 14:e0008470. [PMID: 32644998 PMCID: PMC7373315 DOI: 10.1371/journal.pntd.0008470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/21/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sm16, also known as SPO-1 and SmSLP, is a low molecular weight protein (~16kDa) secreted by the digenean trematode parasite Schistosoma mansoni, one of the main causative agents of human schistosomiasis. The molecule is secreted from the acetabular gland of the cercariae during skin invasion and is believed to perform an immune-suppressive function to protect the invading parasite from innate immune cell attack. METHODOLOGY/PRINCIPAL FINDINGS We show that Sm16 homologues of the Schistosomatoidea family are phylogenetically related to the helminth defence molecule (HDM) family of immunomodulatory peptides first described in Fasciola hepatica. Interrogation of 69 helminths genomes demonstrates that HDMs are exclusive to trematode species. Structural analyses of Sm16 shows that it consists predominantly of an amphipathic alpha-helix, much like other HDMs. In S. mansoni, Sm16 is highly expressed in the cercariae and eggs but not in adult worms, suggesting that the molecule is of importance not only during skin invasion but also in the pro-inflammatory response to eggs in the liver tissues. Recombinant Sm16 and a synthetic form, Sm16 (34-117), bind to macrophages and are internalised into the endosomal/lysosomal system. Sm16 (34-117) elicited a weak pro-inflammatory response in macrophages in vitro but also suppressed the production of bacterial lipopolysaccharide (LPS)-induced inflammatory cytokines. Evaluation of the transcriptome of human macrophages treated with a synthetic Sm16 (34-117) demonstrates that the peptide exerts significant immunomodulatory effects alone, as well as in the presence of LPS. Pathways most significantly influenced by Sm16 (34-117) were those involving transcription factors peroxisome proliferator-activated receptor (PPAR) and liver X receptors/retinoid X receptor (LXR/RXR) which are intricately involved in regulating the cellular metabolism of macrophages (fatty acid, cholesterol and glucose homeostasis) and are central to inflammatory responses. CONCLUSIONS/SIGNIFICANCE These results offer new insights into the structure and function of a well-known immunomodulatory molecule, Sm16, and places it within a wider family of trematode-specific small molecule HDM immune-modulators with immuno-biotherapeutic possibilities.
Collapse
Affiliation(s)
- Jenna Shiels
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - Krystyna Cwiklinski
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Raquel Alvarado
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Karine Thivierge
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Sophie Cotton
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | | | - Joyce To
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Clifford C. Taggart
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - Sinead Weldon
- Airway Innate Immunity Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine (WWIEM), School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland
| | - John P. Dalton
- School of Biological Sciences, Queen’s University Belfast, Northern Ireland
- Center of One Health (COH) and Ryan Institute, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
3
|
Shen J, Wang L, Peng M, Liu Z, Zhang B, Zhou T, Sun X, Wu Z. Recombinant Sj16 protein with novel activity alleviates hepatic granulomatous inflammation and fibrosis induced by Schistosoma japonicum associated with M2 macrophages in a mouse model. Parasit Vectors 2019; 12:457. [PMID: 31547847 PMCID: PMC6755699 DOI: 10.1186/s13071-019-3697-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potent granulomatous inflammation responses induced by schistosome eggs and resultant fibrosis are the primary causes of morbidity in schistosomiasis. Recombinant Sj16 (rSj16), a 16-kDa protein of Schistosoma japonicum produced in Escherichia coli, has been demonstrated to have novel immunoregulatory effects in vivo and in vitro. Thus, this study investigated the anti-inflammatory and anti-fibrotic effects of rSj16 treatment in S. japonicum-infected mice and demonstrated the immune modulation between the schistosome and the host. METHODS Schistosoma japonicum infected mice were treated with the rSj16 protein and Sj16 peptide at different time points post-infection to assess their efficacy at the optimal time point. Sj16 peptide and/or Praziquantel (PZQ) treatments were initiated at week 5 post-infection to compare the therapeutic efficacy of each regimen. Hepatic granulomatous inflammation, fibrosis and cytokine production (pro-inflammatory, Th1, Th2, Th17 and regulatory cytokines IL-10) were detected. Moreover, M2 macrophages were measured to illuminate the mechanisms of Sj16. RESULTS The rSj16 protein and Sj16 peptide had significant protective effects in S. japonicum-infected mice, as shown by decreased granuloma formation, areas of collagen deposition and inhibition of pro-inflammatory Th1, Th2 and Th17 cytokine production. These protective activities were more obvious when animals were treated with either the Sj16 protein or peptide at early stages post-infection. Interestingly, the combined treatment of PZQ and Sj16 was more effective and upregulated IL-10 production than administration of PZQ alone in infected mice. Furthermore, the Sj16 treatment alleviated the pathological effects associated with activated M2 macrophages. CONCLUSIONS This study demonstrates the anti-inflammatory and anti-fibrotic effects of rSj16 in schistosomiasis. Therefore, the combination of rSj16 with PZQ could be a viable and promising therapeutic strategy for schistosomiasis. In addition, this investigation provides additional information on schistosome-mediated immune modulation and host-parasite interactions.
Collapse
Affiliation(s)
- Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mei Peng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhen Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Beibei Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Tao Zhou
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, 510080, Guangdong, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Rosenheim JA. Short- and long-term evolution in our arms race with cancer: Why the war on cancer is winnable. Evol Appl 2018; 11:845-852. [PMID: 29928294 PMCID: PMC5999210 DOI: 10.1111/eva.12612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Human society is engaged in an arms race against cancer, which pits one evolutionary process-human cultural evolution as we develop novel cancer therapies-against another evolutionary process-the ability of oncogenic selection operating among cancer cells to select for lineages that are resistant to our therapies. Cancer cells have a powerful ability to evolve resistance over the short term, leading to patient relapse following an initial period of apparent treatment efficacy. However, we are the beneficiaries of a fundamental asymmetry in our arms race against cancer: Whereas our cultural evolution is a long-term and continuous process, resistance evolution in cancer cells operates only over the short term and is discontinuous - all resistance adaptations are lost each time a cancer patient dies. Thus, our cultural adaptations are permanent, whereas cancer's genetic adaptations are ephemeral. Consequently, over the long term, there is good reason to expect that we will emerge as the winners in our war against cancer.
Collapse
Affiliation(s)
- Jay A. Rosenheim
- Department of Entomology and Nematologyand Center for Population Biology, University of California DavisDavisCAUSA
| |
Collapse
|
5
|
Wu Z, Wang L, Tang Y, Sun X. Parasite-Derived Proteins for the Treatment of Allergies and Autoimmune Diseases. Front Microbiol 2017; 8:2164. [PMID: 29163443 PMCID: PMC5682104 DOI: 10.3389/fmicb.2017.02164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
The morbidity associated with atopic diseases and immune dysregulation disorders such as asthma, food allergies, multiple sclerosis, atopic dermatitis, type 1 diabetes mellitus, and inflammatory bowel disease has been increasing all around the world over the past few decades. Although the roles of non-biological environmental factors and genetic factors in the etiopathology have been particularly emphasized, they do not fully explain the increase; for example, genetic factors in a population change very gradually. Epidemiological investigation has revealed that the increase also parallels a decrease in infectious diseases, especially parasitic infections. Thus, the reduced prevalence of parasitic infections may be another important reason for immune dysregulation. Parasites have co-evolved with the human immune system for a long time. Some parasite-derived immune-evasion molecules have been verified to reduce the incidence and harmfulness of atopic diseases in humans by modulating the immune response. More importantly, some parasite-derived products have been shown to inhibit the progression of inflammatory diseases and consequently alleviate their symptoms. Thus, parasites, and especially their products, may have potential applications in the treatment of autoimmune diseases. In this review, the potential of parasite-derived products and their analogs for use in the treatment of atopic diseases and immune dysregulation is summarized.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Yanlai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
6
|
Wang L, Xie H, Xu L, Liao Q, Wan S, Yu Z, Lin D, Zhang B, Lv Z, Wu Z, Sun X. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR-α Signaling Pathway. Am J Cancer Res 2017; 7:3446-3460. [PMID: 28912887 PMCID: PMC5596435 DOI: 10.7150/thno.20359] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Epidemiologic studies and animal model experiments have shown that parasites have significant modulatory effects on autoimmune disorders, including inflammatory bowel disease (IBD). Recombinant Sj16 (rSj16), a 16-kDa secreted protein of Schistosoma japonicum (S.japonicum) produced by Escherichia coli (E. coli), has been shown to have immunoregulatory effects in vivo and in vitro. In this study, we aimed to determine the effects of rSj16 on dextran sulfate sodium (DSS)-induced colitis. Methods: DSS-induced colitis mice were treated with rSj16. Body weight loss, disease activity index (DAI), myeloperoxidase (MPO) activity levels, colon lengths, macroscopic scores, histopathology findings, inflammatory cytokine levels and regulatory T cell (Treg) subset levels were examined. Moreover, the differential genes expression after treated with rSj16 were sequenced, analyzed and identified. Results: rSj16 attenuated clinical activity of DSS-induced colitis mice, diminished pro-inflammatory cytokine production, up-regulated immunoregulatory cytokine production and increased Treg percentages in DSS-induced colitis mice. Moreover, DSS-induced colitis mice treated with rSj16 displayed changes in the expression levels of specific genes in the colon and show the crucial role of peroxisome proliferator activated receptor α (PPAR-α) signaling pathway. PPAR-α activation diminished the therapeutic effects of rSj16 in DSS-induced colitis mice, indicating that the PPAR-α signaling pathway plays a crucial role in DSS-induced colitis development. Conclusions: rSj16 has protective effects on DSS-induced colitis, effects mediated mainly by PPAR-α signaling pathway inhibition. The findings of this study suggest that rSj16 may be useful as a therapeutic agent and that PPAR-α may be a new therapeutic target in the treatment of IBD.
Collapse
|
7
|
Recombinant Sj16 from Schistosoma japonicum contains a functional N-terminal nuclear localization signal necessary for nuclear translocation in dendritic cells and interleukin-10 production. Parasitol Res 2016; 115:4559-4571. [PMID: 27640151 DOI: 10.1007/s00436-016-5247-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
Abstract
Sj16 is a Schistosoma japonicum-derived protein (16 kDa in molecular weight) that has been identified as an immune modulation molecule, but the mechanisms of modulation of immune responses are not known. In this report, we aimed to investigate the host immune regulation mechanism by recombinant Sj16 (rSj16) and thus illuminate the molecular mechanism of immune evasion by S. japonicum. The effect of rSj16 and rSj16 mutants on the biology of dendritic cells (DCs) was assessed by examining DC maturation, cytokine production, and expression of surface markers by flow cytometry and enzyme-linked immunosorbent assay. We found that rSj16 significantly stimulated interleukin (IL)-10 production and inhibited LPS-induced bone marrow-derived dendrite cell (BMDC) maturation in a dose-dependent manner. By using antibody neutralization experiments and IL-10-deficient (knockout) mice, we confirmed that the inhibitory effect of rSj16 on LPS-induced BMDCs is due to its induction of IL-10 production. To understand how rSj16 induces the production of IL-10, we analyzed the protein sequence and revealed two potential nuclear localization signals (NLS) in Sj16. The N-terminal NLS (NLS1) is both necessary and sufficient for translocation of rSj16 to the nucleus of BMDCs and is important for subsequent induction of IL-10 production and the inhibition of BMDC maturation by rSj16. The results of our study concluded that the ability of rSj16 to inhibit DC functions is IL-10 dependent which is operated by IL-10R signal pathway. This study also confirmed that NLS is an important domain associated with increased production of IL-10. Our findings will extend the current understanding on host-schistosome relationship and provide insight about bottleneck of parasitic control.
Collapse
|
8
|
Shen J, Xu L, Liu Z, Li N, Wang L, Lv Z, Fung M, Wu Z, Sun X. Gene expression profile of LPS-stimulated dendritic cells induced by a recombinant Sj16 (rSj16) derived from Schistosoma japonicum. Parasitol Res 2014; 113:3073-83. [DOI: 10.1007/s00436-014-3973-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/25/2014] [Indexed: 11/28/2022]
|
9
|
Abstract
Joint infectious causation of cancer has been accepted in a few well-studied instances, including Burkitt's lymphoma and liver cancer. In general, evidence for the involvement of parasitic agents in oncogenesis has expanded, and recent advances in the application of molecular techniques have revealed specific mechanisms by which host cells are transformed. Many parasites evolve to circumvent immune-mediated detection and destruction and to control critical aspects of host cell reproduction and survival: cell proliferation, apoptosis, adhesion, and immortalization. The host has evolved tight regulation of these cellular processes-the control of each represents a barrier to cancer. These barriers need to be compromised for oncogenesis to occur. The abrogation of a barrier is therefore referred to as an essential cause of cancer. Alternatively, some aspects of cellular regulation restrain but do not block oncogenesis. Relaxation of a restraint is therefore referred to as an exacerbating cause of cancer. In this chapter, we explore past and current evidence for joint infectious causation of cancer in the context of essential and exacerbating causes. We stress that discovery of joint infectious causation may provide great improvements in controlling cancer, particularly through the identification of many additional nonhuman targets for synergistic interventions for prevention and treatment.
Collapse
Affiliation(s)
- Paul W Ewald
- Department of Biology, University of Louisville, Louisville, Kentucky, USA.
| | | |
Collapse
|