2
|
De Muylder G, Daulouède S, Lecordier L, Uzureau P, Morias Y, Van Den Abbeele J, Caljon G, Hérin M, Holzmuller P, Semballa S, Courtois P, Vanhamme L, Stijlemans B, De Baetselier P, Barrett MP, Barlow JL, McKenzie ANJ, Barron L, Wynn TA, Beschin A, Vincendeau P, Pays E. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity. PLoS Pathog 2013; 9:e1003731. [PMID: 24204274 PMCID: PMC3814429 DOI: 10.1371/journal.ppat.1003731] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells. METHODOLOGY/PRINCIPAL FINDINGS By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time. CONCLUSION A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.
Collapse
Affiliation(s)
- Géraldine De Muylder
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Sylvie Daulouède
- Laboratoire de Parasitologie, UMR 177 IRD CIRAD Université de Bordeaux, Bordeaux, France
| | - Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yannick Morias
- Myeloid Cell Immunology Laboratory, VIB Brussels, Brussels, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Veterinary Protozoology Unit, Prins Leopold Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Myeloid Cell Immunology Laboratory, VIB Brussels, Brussels, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Biomedical Sciences, Veterinary Protozoology Unit, Prins Leopold Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Michel Hérin
- Department of Pathology, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Philippe Holzmuller
- Laboratoire de Parasitologie, UMR 177 IRD CIRAD Université de Bordeaux, Bordeaux, France
| | - Silla Semballa
- Laboratoire de Parasitologie, UMR 177 IRD CIRAD Université de Bordeaux, Bordeaux, France
| | - Pierrette Courtois
- Laboratoire de Parasitologie, UMR 177 IRD CIRAD Université de Bordeaux, Bordeaux, France
| | - Luc Vanhamme
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoît Stijlemans
- Myeloid Cell Immunology Laboratory, VIB Brussels, Brussels, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Myeloid Cell Immunology Laboratory, VIB Brussels, Brussels, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michael P. Barrett
- The Wellcome Trust Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics Facility, University of Glasgow, Glasgow, United Kingdom
| | - Jillian L. Barlow
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Andrew N. J. McKenzie
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
| | - Luke Barron
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alain Beschin
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Myeloid Cell Immunology Laboratory, VIB Brussels, Brussels, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- * E-mail:
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR 177 IRD CIRAD Université de Bordeaux, Bordeaux, France
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
3
|
Yamanaka CN, Giordani RB, Rezende CO, Eger I, Kessler RL, Tonini ML, de Moraes MH, Araújo DP, Zuanazzi JA, de Almeida MV, Steindel M. Assessment of Leishmanicidal and Trypanocidal Activities of Aliphatic Diamine Derivatives. Chem Biol Drug Des 2013; 82:697-704. [DOI: 10.1111/cbdd.12191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/30/2013] [Accepted: 07/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Celina N. Yamanaka
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| | - Raquel B. Giordani
- Departamento de Farmácia; Universidade Federal do Rio Grande do Norte; Rua General Gustavo Cordeiro de Farias/Sn Natal RN 59010-180 Brazil
| | - Celso O. Rezende
- Departamento de Química; Universidade Federal de Juiz de Fora; Campus Martelos Juiz de Fora MG 36036-330 Brazil
| | - Iriane Eger
- Laboratório de Biologia Celular; Instituto Carlos Chagas/Fiocruz; Curitiba PR 81.350-010 Brazil
- Centro de Ciências da Saúde; Universidade do Vale do Itajaí; Itajaí SC 88.302-202 Brazil
| | - Rafael L. Kessler
- Laboratório de Biologia Celular; Instituto Carlos Chagas/Fiocruz; Curitiba PR 81.350-010 Brazil
| | - Maiko L. Tonini
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| | - Milene H. de Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| | - Debora P. Araújo
- Departamento de Química; Universidade Federal de Juiz de Fora; Campus Martelos Juiz de Fora MG 36036-330 Brazil
| | - Jose A. Zuanazzi
- Faculdade de Farmácia; Universidade Federal do Rio Grande do Sul; Av. Ipiranga 2752 Porto Alegre RS 90610-000 Brazil
| | - Mauro V. de Almeida
- Departamento de Química; Universidade Federal de Juiz de Fora; Campus Martelos Juiz de Fora MG 36036-330 Brazil
| | - Mario Steindel
- Departamento de Microbiologia, Imunologia e Parasitologia; Universidade Federal de Santa Catarina; Cx. postal 476 Florianópolis SC 88.040-970 Brazil
| |
Collapse
|
4
|
Nishimura K, Nakaya H, Nakagawa H, Matsuo S, Ohnishi Y, Yamasaki S. Effect of Trypanosoma brucei brucei on erythropoiesis in infected rats. J Parasitol 2010; 97:88-93. [PMID: 21348612 DOI: 10.1645/ge-2522.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Anemia generated from African trypanosome infection is considered an important symptom in humans and in domestic animals. In order to recover from anemia, the process of erythropoiesis is essential. Erythropoiesis is affected by erythropoietin (EPO), an erythropoietic hormone, supplying iron and inflammatory and proinflammatory cytokines. However, the role of these factors in erythropoiesis during African trypanosome infection remains unclear. In the present study, we analyze how erythropoiesis is altered in anemic Trypanosoma brucei brucei (interleukin-tat 1.4 strain [ILS])-infected rats. We report that the packed cell volume (PCV) of blood from ILS-infected rats was significantly lower 4 days after infection, whereas the number of reticulocytes, as an index of erythropoiesis, did not increase. The level of EPO mRNA in ILS-infected rats did not increase from the third day to the sixth day after infection, the same time that the PCV decreased. Kidney cells of uninfected rats cultured with ILS trypanosome strain for 8 hr in vitro decreased EPO mRNA levels. Treatment of both ILS and cobalt chloride mimicked hypoxia, which restrained the EPO-production-promoting effect of the cobalt. Messenger RNA levels of β-globin and transferrin receptor, as markers of erythropoiesis in the bone marrow, also decreased in ILS-infected rats. Levels of hepcidin mRNA, which controls the supply of iron to the marrow in liver, were increased in ILS-infected rats; however, the concentration of serum iron did not change. Furthermore, mRNA levels of interleukin-12, interferon-γ, tumor necrosis factor-α, and macrophage migration inhibitory factor in the spleen, factors that have the potential to restrain erythropoiesis in bone marrow, were elevated in the ILS-infected rats. These results suggest that ILS infection in rats affect erythropoiesis, which responds by decreasing EPO production and restraining its function in the bone marrow.
Collapse
Affiliation(s)
- Kazuhiko Nishimura
- Laboratory of Bioenvironmental Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Nishimura K, Nakaya H, Nakagawa H, Matsuo S, Ohnishi Y, Yamasaki S. Differential effects of Trypanosoma brucei gambiense and Trypanosoma brucei brucei on rat macrophages. J Parasitol 2010; 97:48-54. [PMID: 21348606 DOI: 10.1645/ge-2466.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian immune responses to Trypanosoma brucei infection are important to control of the disease. In rats infected with T. brucei gambiense (Wellcome strain; WS) or T. brucei brucei (interleukin-tat 1.4 strain [ILS]), a marked increase in the number of macrophages in the spleen can be observed. However, the functional repercussions related to this expansion are not known. To help uncover the functional significance of macrophages in the context of trypanosome infection, we determined the mRNA levels of genes associated with an increase in macrophage number or macrophage function in WS- and ILS-infected rats and in cultured cells. Specifically, we assayed mRNA levels for macrophage colony stimulating factor (M-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage migration inhibitory factor (MIF). Upregulation of GM-CSF and MIF mRNA levels was robust in comparison with changes in M-CSF levels in ILS-infected rats. By contrast, upregulation of M-CSF was more robust in WS-infected rats. The phagocytic activity in macrophages harvested from ILS-infected rat spleens, but not WS-infected spleens, was higher than that in macrophages from uninfected rats. These results suggest that macrophages of WS-infected rats change to an immunosuppressive type. However, when WS or ILS is cocultured with spleen macrophages or HS-P cells, a cell line of rat macrophage origin, M-CSF is upregulated relative to GM-CSF and MIF in both cell types. Anemia occurs in ILS-, but not WS-infected, rats. Treatment of spleen macrophages or HS-P cells cocultured with ILS with cobalt chloride, which mimics the effects of anemia-induced hypoxia, led to downregulation of M-CSF mRNA levels, upregulation of GM-CSF and MIF, and an increase in phagocytic activity. However, the effect of cobalt chloride on spleen macrophages and HS-P cells cocultured with WS was restricted. These results suggest that anemia-induced hypoxia in ILS-infected rats stimulates the immune system and activates macrophages.
Collapse
Affiliation(s)
- Kazuhiko Nishimura
- Laboratory of Bioenvironmental Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Nishimura K, Yanase T, Nakagawa H, Matsuo S, Ohnishi Y, Yamasaki S. Effect of polyamine-deficient chow on Trypanosoma brucei brucei infection in rats. J Parasitol 2010; 95:781-6. [PMID: 20049984 DOI: 10.1645/ge-1883.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Polyamines are essential for proliferation of Trypanosoma brucei brucei, and feeding rats polyamine-deficient chow (PDC) decreases their blood polyamine concentrations. Proliferation of T. b. brucei (IL-tat 1.4 strain) (IL) is not restrained within PDC-fed rats. However, symptoms of IL-infected rats such as anemia decrease by PDC feeding. We reported cytokine and nitric oxide (NO) production of T. b. gambiense (Wellcome strain [WS])-infected rats were affected by PDC feeding, and WS proliferation was restrained. Therefore, we investigated whether the change in production of cytokines and NO by PDC feeding affects IL proliferation and decreases symptoms in vivo. In IL-infected PDC-fed rats, NO, interleukin (IL)-12, and tumor necrosis factor-alpha production increased while interferon-gamma and IL-10 decreased compared to normal chow-fed rats. IL proliferation was restrained by NO production when it was co-cultured with spleen cells harvested from uninfected rats. In contrast, IL proliferation in infected rats was not changed by PDC feeding, although NO production was increased. The results suggest that changes in cytokines and NO production in IL-infected rats by PDC feeding have little influence on IL proliferation. However, they may serve to decrease symptoms.
Collapse
Affiliation(s)
- Kazuhiko Nishimura
- Laboratory of Infectious Diseases Control, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis. Antimicrob Agents Chemother 2009; 53:2052-8. [PMID: 19289530 DOI: 10.1128/aac.01674-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Trypanosomiasis remains a significant disease across the sub-Saharan African continent, with 50,000 to 70,000 individuals infected. The utility of current therapies is limited by issues of toxicity and the need to administer compounds intravenously. We have begun a program to pursue lead optimization around MDL 73811, an irreversible inhibitor of S-adenosylmethionine decarboxylase (AdoMetDC). This compound is potent but in previous studies cleared rapidly from the blood of rats (T. L. Byers, T. L. Bush, P. P. McCann, and A. J. Bitonti, Biochem. J. 274:527-533). One of the analogs synthesized (Genz-644131) was shown to be highly active against Trypanosoma brucei rhodesiense in vitro (50% inhibitory concentration, 400 pg/ml). Enzyme kinetic studies showed Genz-644131 to be approximately fivefold more potent than MDL 73811 against the T. brucei brucei AdoMetDC-prozyme complex. This compound was stable in vitro in rat and human liver microsomal and hepatocyte assays, was stable in rat whole-blood assays, did not significantly inhibit human cytochrome P450 enzymes, had no measurable efflux in CaCo-2 cells, and was only 41% bound by serum proteins. Pharmacokinetic studies of mice following intraperitoneal dosing showed that the half-life of Genz-644131 was threefold greater than that of MDL 73811 (7.4 h versus 2.5 h). Furthermore, brain penetration of Genz-644131 was 4.3-fold higher than that of MDL 73811. Finally, in vivo efficacy studies of T. b. brucei strain STIB 795-infected mice showed that Genz-644131 significantly extended survival (from 6.75 days for controls to >30 days for treated animals) and cured animals infected with T. b. brucei strain LAB 110 EATRO. Taken together, the data strengthen validation of AdoMetDC as an important parasite target, and these studies have shown that analogs of MDL 73811 can be synthesized with improved potency and brain penetration.
Collapse
|
10
|
Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol 2007; 152:1155-71. [PMID: 17618313 DOI: 10.1038/sj.bjp.0707354] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review discusses the challenges of chemotherapy for human African trypanosomiasis (HAT). The few drugs registered for use against the disease are unsatisfactory for a number of reasons. HAT has two stages. In stage 1 the parasites proliferate in the haemolymphatic system. In stage 2 they invade the central nervous system and brain provoking progressive neurological dysfunction leading to symptoms that include the disrupted sleep wake patterns that give HAT its more common name of sleeping sickness. Targeting drugs to the central nervous system offers many challenges. However, it is the cost of drug development for diseases like HAT, that afflict exclusively people of the world's poorest populations, that has been the principal barrier to new drug development and has led to them becoming neglected. Here we review drugs currently registered for HAT, and also discuss the few compounds progressing through clinical trials. Finally we report on new initiatives that might allow progress to be made in developing new and satisfactory drugs for this terrible disease.
Collapse
|