1
|
Calvert AM, Gutowsky SE, Fifield DA, Burgess NM, Bryant R, Fraser GS, Gjerdrum C, Hedd A, Jones PL, Mauck RA, McFarlane Tranquilla L, Montevecchi WA, Pollet IL, Ronconi RA, Rock JC, Russell J, Wilhelm SI, Wong SNP, Robertson GJ. Inter-colony variation in predation, mercury burden and adult survival in a declining seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168549. [PMID: 37981162 DOI: 10.1016/j.scitotenv.2023.168549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Migratory species with disjunct and localized breeding distributions, including many colonial marine birds, pose challenges for management and conservation as their dynamics are shaped by both broad oceanographic changes and specific factors affecting individual breeding colonies. We compare six colonies of the declining Leach's storm-petrel, Hydrobates leucorhous, across their core range in Atlantic Canada using standard capture-mark-recapture methods to estimate annual survival of individually marked populations of breeding adults. Over the period analysed (5-20 years per colony; 2003-2022), mean annual survival varied among colonies (0.81-0.88) and annually (process error σ ranging from 0.01 to 0.09), though annual fluctuations were not synchronous across colonies. Two colonies with limited natural predation showed higher survival, and there was a decline in survival with increasing colony-specific total mercury burden. Our work shows that colony-specific pressures and regional contaminant burdens are potentially important contributors to current population declines, and highlights the importance of monitoring demographic rates at multiple sites for species that congregate at key life-history stages.
Collapse
Affiliation(s)
- Anna M Calvert
- Landscape Science & Technology Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | | | - David A Fifield
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Neil M Burgess
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change, Canada, Mount Pearl, NL
| | - Rachel Bryant
- Alder Institute, Tors Cove, NL, Canada; Department of Philosophy and Religion, University of Tampa, Tampa, FL, USA
| | - Gail S Fraser
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Carina Gjerdrum
- Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada
| | - April Hedd
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | | | | | | | - William A Montevecchi
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Ingrid L Pollet
- Biology Department, Acadia University, Wolfville, NS, Canada
| | - Robert A Ronconi
- Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada
| | - Jennifer C Rock
- Canadian Wildlife Service, Environment and Climate Change Canada, Sackville, NB, Canada
| | | | - Sabina I Wilhelm
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada
| | - Sarah N P Wong
- Canadian Wildlife Service, Environment and Climate Change Canada, Dartmouth, NS, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada.
| |
Collapse
|
2
|
Quillfeldt P, Bedolla-Guzmán Y, Libertelli MM, Cherel Y, Massaro M, Bustamante P. Mercury in Ten Storm-Petrel Populations from the Antarctic to the Subtropics. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023:10.1007/s00244-023-01011-3. [PMID: 37438517 PMCID: PMC10374726 DOI: 10.1007/s00244-023-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 μg g-1 dw) and highest in subtropical Leach's Storm-petrels (7.6 μg g-1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson's Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 μg g-1 dw) and highest in Leach's Storm-petrels (3.6 μg g-1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson's Storm-petrels, but did not change in Wilson's Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.
Collapse
Affiliation(s)
- Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| | - Yuliana Bedolla-Guzmán
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
- Grupo de Ecología Y Conservación de Islas, A.C., Ensenada, 22800, Baja California, Mexico
| | - Marcela M Libertelli
- Departamento de Biología de los Predadores Tope, Coordinación Ciencias de la Vida, Instituto Antártico Argentino, Avenida 25 de Mayo 1143, B1650HML, Buenos Aires, Argentina
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Melanie Massaro
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Albury, NSW, 2640, Australia
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
3
|
Pollet IL, McFarlane-Tranquilla L, Burgess NM, Diamond AW, Gjerdrum C, Hedd A, Hoeg R, Jones PL, Mauck RA, Montevecchi WA, Pratte I, Ronconi RA, Shutler D, Wilhelm SI, Mallory ML. Factors influencing mercury levels in Leach's storm-petrels at northwest Atlantic colonies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160464. [PMID: 36427741 DOI: 10.1016/j.scitotenv.2022.160464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg) is a globally distributed heavy metal, with negative effects on wildlife. Its most toxic form, methylmercury (MeHg), predominates in aquatic systems. Levels of MeHg in marine predators can vary widely among individuals and populations. Leach's storm-petrels (Hydrobates leucorhous) have elevated levels of Hg but the role of Hg in storm-petrel population declines is unknown. In this study, we used egg and blood samples to study variation in Hg exposure among several northwest Atlantic colonies during breeding seasons, thereby evaluating relative toxicity risk within and among colonies. Total mercury (THg) concentrations were higher with increasing colony latitude, and were more pronounced in blood than in eggs. THg concentrations in blood were mostly associated with low toxicity risk in birds from the southern colonies and moderate risks in birds from the northern colonies; however, those values did not affect hatching or fledging success. THg concentrations in both eggs and blood were positively correlated with δ34S, emphasizing the role of sulfate-reducing bacteria in methylation of THg acquired through marine food webs, which is consistent with enriched δ34S profiles. By associating tracking data from foraging trips with THg from blood, we determined that blood THg levels were higher when storm-petrel's intensive search locations were over deeper waters. We conclude that spatial variation in THg concentrations in Leach's storm-petrels is attributable to differences in ocean depth at foraging locations, both at individual and colony levels. Differences in diet among colonies observed previously are the most likely cause for observed blood THg differences. As one of the few pelagic seabird species breeding in Atlantic Canada, with limited overlap in core foraging areas among colonies, Leach's storm-petrels can be used as biomonitors for less sampled offshore pelagic regions. The global trend in Hg emissions combined with legacy levels warrant continued monitoring for toxicity effects in seabirds.
Collapse
Affiliation(s)
- Ingrid L Pollet
- Acadia University, Department of Biology, Wolfville, Nova Scotia B4P 2R6, Canada; Birds Canada, PO Box 6436, Sackville, New Brunswick E4L 1G6, Canada.
| | | | - Neil M Burgess
- Environment and Climate Change Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Antony W Diamond
- Atlantic Laboratory for Avian Research, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Carina Gjerdrum
- Canadian Wildlife Service, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - April Hedd
- Environment and Climate Change Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Rielle Hoeg
- Acadia University, Department of Biology, Wolfville, Nova Scotia B4P 2R6, Canada; Birds Canada, PO Box 6436, Sackville, New Brunswick E4L 1G6, Canada
| | | | | | - William A Montevecchi
- Psychology Department, Memorial University, St John's, Newfoundland and Labrador A1C 3C9, Canada
| | - Isabeau Pratte
- Canadian Wildlife Service, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - Robert A Ronconi
- Canadian Wildlife Service, Environment and Climate Change Canada, 45 Alderney Drive, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - Dave Shutler
- Acadia University, Department of Biology, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Sabina I Wilhelm
- Environment and Climate Change Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Mark L Mallory
- Acadia University, Department of Biology, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
4
|
Mauck RA, Pratte I, Hedd A, Pollet IL, Jones PL, Montevecchi WA, Ronconi RA, Gjerdrum C, Adrianowyscz S, McMahon C, Acker H, Taylor LU, McMahon J, Dearborn DC, Robertson GJ, McFarlane Tranquilla LA. Female and male Leach's Storm Petrels ( Hydrobates leucorhous) pursue different foraging strategies during the incubation period. THE IBIS 2023; 165:161-178. [PMID: 36589762 PMCID: PMC9798729 DOI: 10.1111/ibi.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
Reproduction in procellariiform birds is characterized by a single egg clutch, slow development, a long breeding season and obligate biparental care. Female Leach's Storm Petrels Hydrobates leucorhous, nearly monomorphic members of this order, produce eggs that are between 20 and 25% of adult body weight. We tested whether female foraging behaviour differs from male foraging behaviour during the ~ 44-day incubation period across seven breeding colonies in the Northwest Atlantic. Over six breeding seasons, we used a combination of Global Positioning System and Global Location Sensor devices to measure characteristics of individual foraging trips during the incubation period. Females travelled significantly greater distances and went farther from the breeding colony than did males on individual foraging trips. For both sexes, the longer the foraging trip, the greater the distance. Independent of trip duration, females travelled farther, and spent a greater proportion of their foraging trips prospecting widely as defined by behavioural categories derived from a Hidden Markov Model. For both sexes, trip duration decreased with date. Sex differences in these foraging metrics were apparently not a consequence of morphological differences or spatial segregation. Our data are consistent with the idea that female foraging strategies differed from male foraging strategies during incubation in ways that would be expected if females were still compensating for egg formation.
Collapse
Affiliation(s)
| | - Isabeau Pratte
- Canadian Wildlife ServiceEnvironment and Climate Change Canada45 Alderney DriveDartmouthNSB2Y 2N6Canada
| | - April Hedd
- Wildlife Research DivisionEnvironment and Climate Change CanadaMount PearlNLA1N 4T3Canada
| | | | | | | | - Robert A. Ronconi
- Canadian Wildlife ServiceEnvironment and Climate Change Canada45 Alderney DriveDartmouthNSB2Y 2N6Canada
| | - Carina Gjerdrum
- Canadian Wildlife ServiceEnvironment and Climate Change Canada45 Alderney DriveDartmouthNSB2Y 2N6Canada
| | | | | | - Haley Acker
- Biology Department, Kenyon CollegeGambierOH42022USA
| | | | | | | | - Gregory J. Robertson
- Wildlife Research DivisionEnvironment and Climate Change CanadaMount PearlNLA1N 4T3Canada
| | | |
Collapse
|
5
|
Ausems ANMA, Skrzypek G, Wojczulanis-Jakubas K, Jakubas D. Birds of a feather moult together: Differences in moulting distribution of four species of storm-petrels. PLoS One 2021; 16:e0245756. [PMID: 33481938 PMCID: PMC7822297 DOI: 10.1371/journal.pone.0245756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
The non-breeding period of pelagic seabirds, and particularly the moulting stage, is an important, but understudied part of their annual cycle as they are hardly accessible outside of the breeding period. Knowledge about the moulting ecology of seabirds is important to understand the challenges they face outside and within the breeding season. Here, we combined stable carbon (δ13C) and oxygen (δ18O) signatures of rectrices grown during the non-breeding period of two pairs of storm-petrel species breeding in the northern (European storm-petrel, Hydrobates pelagicus, ESP; Leach’s storm-petrel, Hydrobates leucorhous, LSP) and southern (black-bellied storm-petrel, Fregetta tropica, BBSP; Wilson’s storm-petrel, Oceanites oceanicus, WSP) hemispheres to determine differences in moulting ranges within and between species. To understand clustering patterns in δ13C and δ18O moulting signatures, we examined various variables: species, sexes, years, morphologies (feather growth rate, body mass, tarsus length, wing length) and δ15N. We found that different factors could explain the differences within and between the four species. We additionally employed a geographical distribution prediction model based on oceanic δ13C and δ18O isoscapes, combined with chlorophyll-a concentrations and observational data to predict potential moulting areas of the sampled feather type. The northern species were predicted to moult in temperate and tropical Atlantic zones. BBSP was predicted to moult on the southern hemisphere north of the Southern Ocean, while WSP was predicted to moult further North, including in the Arctic and northern Pacific. While moulting distribution can only be estimated on large geographical scales using δ13C and δ18O, validating predictive outcomes with food availability proxies and observational data may provide valuable insights into important moulting grounds. Establishing those, in turn, is important for conservation management of elusive pelagic seabirds.
Collapse
Affiliation(s)
- Anne N. M. A. Ausems
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, The University of Gdańsk, Gdańsk, Poland
- * E-mail:
| | - Grzegorz Skrzypek
- West Australian Biogeochemistry Centre, The University of Western Australia, Crawley, WA, Australia
| | | | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, The University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Krug DM, Frith R, Wong SNP, Ronconi RA, Wilhelm SI, O'Driscoll NJ, Mallory ML. Marine pollution in fledged Leach's storm-petrels (Hydrobates leucorhous) from Baccalieu Island, Newfoundland and Labrador, Canada. MARINE POLLUTION BULLETIN 2021; 162:111842. [PMID: 33203602 DOI: 10.1016/j.marpolbul.2020.111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The Leach's storm-petrel (Hydrobates leucorhous) is one of the most abundant and widely distributed marine birds in the North Atlantic but is under global population decline, possibly linked to marine pollution. We determined levels of ingested plastic and hepatic total mercury (THg) in recently fledged juveniles that stranded in Newfoundland and Labrador, Canada, and assessed the relationship to body condition, size and diet. Plastic prevalence was high (87.5%) but hepatic THg was relatively low (mean 486.7 ng/g dry weight) compared to other studies. Levels of neither pollutant were significantly related to body metrics of health. Our data confirm that plastic and mercury are pervasive in the western North Atlantic Ocean, prominent even in young birds.
Collapse
Affiliation(s)
- David M Krug
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, Nova Scotia B3H 4R2, Canada
| | - Rhyl Frith
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, Nova Scotia B3H 4R2, Canada
| | - Sarah N P Wong
- Environment and Climate Change Canada, Canadian Wildlife Service, 45 Alderney Drive, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - Robert A Ronconi
- Environment and Climate Change Canada, Canadian Wildlife Service, 45 Alderney Drive, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - Sabina I Wilhelm
- Environment and Climate Change Canada, Canadian Wildlife Service, 6 Bruce Street, Mount Pearl, Newfoundland A1N 4T3, Canada
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Acadia University, 15 University Drive, Wolfville, Nova Scotia B40 2R6, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia B4P 2R6, Canada.
| |
Collapse
|