1
|
Dainiak N. Biology of Exfoliation of Plasma Membrane-Derived Vesicles and the Radiation Response: Historical Background, Applications in Biodosimetry and Cell-Free Therapeutics, and Quantal Mechanisms for Their Release and Function with Implications for Space Travel. Radiat Res 2024; 202:328-354. [PMID: 38981604 DOI: 10.1667/rade-24-00078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 07/11/2024]
Abstract
This historical review of extracellular vesicles in the setting of exposure to ionizing radiation (IR) traces our understanding of how vesicles were initially examined and reported in the literature in the late 1970s (for secreted exosomes) and early 1980s (for plasma membrane-derived, exfoliated vesicles) to where we are now and where we may be headed in the next decade. An emphasis is placed on biophysical properties of extracellular vesicles, energy consumption and the role of vesiculation as an essential component of membrane turnover. The impact of intercellular signal trafficking by vesicle surface and intra-vesicular lipids, proteins, nucleic acids and metabolites is reviewed in the context of biomarkers for estimating individual radiation dose after exposure to radiation, pathogenesis of disease and development of cell-free therapeutics. Since vesicles express both growth stimulatory and inhibitory molecules, a hypothesis is proposed to consider superposition in a shared space and entanglement of molecules by energy sources that are external to human cells. Implications of this approach for travel in deep space are briefly discussed in the context of clinical disorders that have been observed after space travel.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
3
|
Russ E, Fatanmi OO, Wise SY, Carpenter AD, Maniar M, Iordanskiy S, Singh VK. Serum microRNA profile of rhesus macaques following ionizing radiation exposure and treatment with a medical countermeasure, Ex-Rad. Sci Rep 2024; 14:4518. [PMID: 38402257 PMCID: PMC10894202 DOI: 10.1038/s41598-024-54997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Exposure to ionizing radiation (IR) presents a formidable clinical challenge. Total-body or significant partial-body exposure at a high dose and dose rate leads to acute radiation syndrome (ARS), the complex pathologic effects that arise following IR exposure over a short period of time. Early and accurate diagnosis of ARS is critical for assessing the exposure dose and determining the proper treatment. Serum microRNAs (miRNAs) may effectively predict the impact of irradiation and assess cell viability/senescence changes and inflammation. We used a nonhuman primate (NHP) model-rhesus macaques (Macaca mulatta)-to identify the serum miRNA landscape 96 h prior to and following 7.2 Gy total-body irradiation (TBI) at four timepoints: 24, 36, 48, and 96 h. To assess whether the miRNA profile reflects the therapeutic effect of a small molecule ON01210, commonly known as Ex-Rad, that has demonstrated radioprotective efficacy in a rodent model, we administered Ex-Rad at two different schedules of NHPs; either 36 and 48 h post-irradiation or 48 and 60 h post-irradiation. Results of this study corroborated our previous findings obtained using a qPCR array for several miRNAs and their modulation in response to irradiation: some miRNAs demonstrated a temporary increased serum concentration within the first 24-36 h (miR-375, miR-185-5p), whereas others displayed either a prolonged decline (miR-423-5p) or a long-term increase (miR-30a-5p, miR-27b-3p). In agreement with these time-dependent changes, hierarchical clustering of differentially expressed miRNAs showed that the profiles of the top six miRNA that most strongly correlated with radiation exposure were inconsistent between the 24 and 96 h timepoints following exposure, suggesting that different biodosimetry miRNA markers might be required depending on the time that has elapsed. Finally, Ex-Rad treatment restored the level of several miRNAs whose expression was significantly changed after radiation exposure, including miR-16-2, an miRNA previously associated with radiation survival. Taken together, our findings support the use of miRNA expression as an indicator of radiation exposure and the use of Ex-Rad as a potential radioprotectant.
Collapse
Affiliation(s)
- Eric Russ
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Manoj Maniar
- Onconova Therapeutics, Inc., Newtown, PA, 18940, USA
- Palm Pharmaceuticals, Inc, 46750 Sentinel Drive, Fremont, CA, 94539, USA
| | - Sergey Iordanskiy
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814-2712, USA.
| |
Collapse
|
4
|
Taliaferro LP, Agarwal RK, Coleman CN, DiCarlo AL, Hofmeyer KA, Loelius SG, Molinar-Inglis O, Tedesco DC, Satyamitra MM. Sex differences in radiation research. Int J Radiat Biol 2023; 100:466-485. [PMID: 37991728 PMCID: PMC10922591 DOI: 10.1080/09553002.2023.2283089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE The Sex Differences in Radiation Research workshop addressed the role of sex as a confounder in radiation research and its implication in real-world radiological and nuclear applications. METHODS In April 2022, HHS-wide partners from the Radiation and Nuclear Countermeasures Program, the Office of Research on Women's Health National Institutes of Health Office of Women's Health, U.S. Food and Drug Administration, and the Radiological and Nuclear Countermeasures Branch at the Biomedical Advanced Research and Development Authority conducted a workshop to address the scientific implication and knowledge gaps in understanding sex in basic and translational research. The goals of this workshop were to examine sex differences in 1. Radiation animal models and understand how these may affect radiation medical countermeasure development; 2. Biodosimetry and/or biomarkers used to assess acute radiation syndrome, delayed effects of acute radiation exposure, and/or predict major organ morbidities; 3. medical research that lacks representation from both sexes. In addition, regulatory policies that influence inclusion of women in research, and the gaps that exist in drug development and device clearance were discussed. Finally, real-world sex differences in human health scenarios were also considered. RESULTS This report provides an overview of the two-day workshop, and open discussion among academic investigators, industry researchers, and U.S. government representatives. CONCLUSIONS This meeting highlighted that current study designs lack the power to determine statistical significance based on sex, and much is unknown about the underlying factors that contribute to these differences. Investigators should accommodate both sexes in all stages of research to ensure that the outcome is robust, reproducible, and accurate, and will benefit public health.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| | - Rajeev K. Agarwal
- Office of Research on Women’s Health (ORWH), Office of the Director, NIH, Rockville, MD, USA
| | - C. Norman Coleman
- Radiation Research Program Division of Cancer Treatment and Diagnosis, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI) and Administration for Strategic Preparedness and Response (ASPR), U.S. Department of Health and Human Services (HHS), Washington, DC, USA
| | - Andrea L. DiCarlo
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| | - Kimberly A. Hofmeyer
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Shannon G. Loelius
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Olivia Molinar-Inglis
- Previously RNCP, DAIT, NIAID, NIH; now Antivirals and Antitoxins Program, Division of CBRN Countermeasures, BARDA, ASPR, HHS, Washington, DC, USA
| | - Dana C. Tedesco
- Radiological and Nuclear Countermeasures Branch, Biomedical Advanced Research and Development Authority (BARDA), ASPR, HHS, Washington, DC, USA
| | - Merriline M. Satyamitra
- Division of Allergy, Immunology, and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Radiation and Nuclear Countermeasures Program (RNCP), Rockville, MD, USA
| |
Collapse
|
5
|
Martello S, Bylicky MA, Shankavaram U, May JM, Chopra S, Sproull M, Scott KMK, Aryankalayil MJ, Coleman CN. Comparative Analysis of miRNA Expression after Whole-Body Irradiation Across Three Strains of Mice. Radiat Res 2023; 200:266-280. [PMID: 37527359 PMCID: PMC10635637 DOI: 10.1667/rade-23-00007.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023]
Abstract
Whole- or partial-body exposure to ionizing radiation damages major organ systems, leading to dysfunction on both acute and chronic timescales. Radiation medical countermeasures can mitigate acute damages and may delay chronic effects when delivered within days after exposure. However, in the event of widespread radiation exposure, there will inevitably be scarce resources with limited countermeasures to distribute among the affected population. Radiation biodosimetry is necessary to separate exposed from unexposed victims and determine those who requires the most urgent care. Blood-based, microRNA signatures have great potential for biodosimetry, but the affected population in such a situation will be genetically heterogeneous and have varying miRNA responses to radiation. Thus, there is a need to understand differences in radiation-induced miRNA expression across different genetic backgrounds to develop a robust signature. We used inbred mouse strains C3H/HeJ and BALB/c mice to determine how accurate miRNA in blood would be in developing markers for radiation vs. no radiation, low dose (1 Gy, 2 Gy) vs. high dose (4 Gy, 8 Gy), and high risk (8 Gy) vs. low risk (1 Gy, 2 Gy, 4 Gy). Mice were exposed to whole-body doses of 0 Gy, 1 Gy, 2 Gy, 4 Gy, or 8 Gy of X rays. MiRNA expression changes were identified using NanoString nCounter panels on blood RNA collected 1, 2, 3 or 7 days postirradiation. Overall, C3H/HeJ mice had more differentially expressed miRNAs across all doses and timepoints than BALB/c mice. The highest amount of differential expression occurred at days 2 and 3 postirradiation for both strains. Comparison of C3H/HeJ and BALB/c expression profiles to those previously identified in C57BL/6 mice revealed 12 miRNAs that were commonly expressed across all three strains, only one of which, miR-340-5p, displayed a consistent regulation pattern in all three miRNA data. Notably multiple Let-7 family members predicted high-dose and high-risk radiation exposure (Let-7a, Let-7f, Let-7e, Let-7g, and Let-7d). KEGG pathway analysis demonstrated involvement of these predicted miRNAs in pathways related to: Fatty acid metabolism, Lysine degradation and FoxO signaling. These findings indicate differences in the miRNA response to radiation across various genetic backgrounds, and highlights key similarities, which we exploited to discover miRNAs that predict radiation exposure. Our study demonstrates the need and the utility of including multiple animal strains in developing and validating biodosimetry diagnostic signatures. From this data, we developed highly accurate miRNA signatures capable of predicting exposed and unexposed subjects within a genetically heterogeneous population as quickly as 24 h of exposure to radiation.
Collapse
Affiliation(s)
- Shannon Martello
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Michelle A. Bylicky
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Jared M. May
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Kevin MK Scott
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - Molykutty J. Aryankalayil
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
| | - C. Norman Coleman
- Radiation Oncology Branch, Center for Cancer, National Institutes of Health, Rockville, Maryland 20850
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850
| |
Collapse
|
6
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Role of p53 in Regulating Radiation Responses. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071099. [PMID: 35888186 PMCID: PMC9319710 DOI: 10.3390/life12071099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022]
Abstract
p53 is known as the guardian of the genome and plays various roles in DNA damage and cancer suppression. The p53 gene was found to express multiple p53 splice variants (isoforms) in a physiological, tissue-dependent manner. The various genes that up- and down-regulated p53 are involved in cell viability, senescence, inflammation, and carcinogenesis. Moreover, p53 affects the radioadaptive response. Given that several studies have already been published on p53, this review presents its role in the response to gamma irradiation by interacting with MDM2, NF-κB, and miRNA, as well as in the inflammation processes, senescence, carcinogenesis, and radiation adaptive responses. Finally, the potential of p53 as a biomarker is discussed.
Collapse
|
8
|
Jia M, Wang Z. MicroRNAs as Biomarkers for Ionizing Radiation Injury. Front Cell Dev Biol 2022; 10:861451. [PMID: 35309926 PMCID: PMC8927810 DOI: 10.3389/fcell.2022.861451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Accidental radiation exposures such as industrial accidents and nuclear catastrophes pose a threat to human health, and the potential or substantial injury caused by ionizing radiation (IR) from medical treatment that cannot be ignored. Although the mechanisms of IR-induced damage to various organs have been gradually investigated, medical treatment of irradiated individuals is still based on clinical symptoms. Hence, minimally invasive biomarkers that can predict radiation damage are urgently needed for appropriate medical management after radiation exposure. In the field of radiation biomarker, finding molecular biomarkers to assess different levels of radiation damage is an important direction. In recent years, microRNAs have been widely reported as several diseases’ biomarkers, such as cancer and cardiovascular diseases, and microRNAs are also of interest to the ionizing radiation field as radiation response molecules, thus researchers are turning attention to the potential of microRNAs as biomarkers in tumor radiation response and the radiation toxicity prediction of normal tissues. In this review, we summarize the distribution of microRNAs, the progress on research of microRNAs as markers of IR, and make a hypothesis about the origin and destination of microRNAs in vivo after IR.
Collapse
|