1
|
Veerana M, Yu NN, Bae SJ, Kim I, Kim ES, Ketya W, Lee HY, Kim NY, Park G. Enhancement of Fungal Enzyme Production by Radio-Frequency Electromagnetic Fields. J Fungi (Basel) 2022; 8:1187. [PMID: 36354954 PMCID: PMC9695996 DOI: 10.3390/jof8111187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Enzyme production by microorganisms on an industrial scale has demonstrated technical bottlenecks, such as low efficiency in enzyme expression and extracellular secretion. In this study, as a potential tool for overcoming these technical limits, radio-frequency electromagnetic field (RF-EMF) exposure was examined for its possibility to enhance production of an enzyme, α-amylase, in a filamentous fungus, Aspergillus oryzae. The RF-EMF perfectly resonated at 2 GHz with directivity radiation pattern and peak gain of 0.5 dB (0.01 Watt). Total protein concentration and activity of α-amylase measured in media were about 1.5-3-fold higher in the RF-EMF exposed (10 min) sample than control (no RF-EMF) during incubation (the highest increase after 16 h). The level of α-amylase mRNA in cells was approximately 2-8-fold increased 16 and 24 h after RF-EMF exposure for 10 min. An increase in vesicle accumulation within fungal hyphae and the transcription of some genes involved in protein cellular trafficking was observed in RF-EMF-exposed samples. Membrane potential was not changed, but the intracellular Ca2+ level was elevated after RF-EMF exposure. Our results suggest that RF-EMF can increase the extracellular level of fungal total proteins and α-amylase activity and the intracellular level of Ca2+.
Collapse
Affiliation(s)
- Mayura Veerana
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
| | - Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
| | - Si-Jin Bae
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Ikhwan Kim
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Eun-Seong Kim
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
| | - Hak-Yong Lee
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
| | - Nam-Young Kim
- Radio-Frequency Integrated Circuit (RFIC) Center, Kwangwoon University, Seoul 01897, Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|