1
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
2
|
Little MP, Brenner AV, Grant EJ, Sugiyama H, Preston DL, Sakata R, Cologne J, Velazquez-Kronen R, Utada M, Mabuchi K, Ozasa K, Olson JD, Dugan GO, Pazzaglia S, Cline JM, Applegate KE. Age effects on radiation response: summary of a recent symposium and future perspectives. Int J Radiat Biol 2022; 98:1-11. [PMID: 35394411 PMCID: PMC9626395 DOI: 10.1080/09553002.2022.2063962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
One of the principal uncertainties when estimating population risk of late effects from epidemiological data is that few radiation-exposed cohorts have been followed up to extinction. Therefore, the relative risk model has often been used to estimate radiation-associated risk and to extrapolate risk to the end of life. Epidemiological studies provide evidence that children are generally at higher risk of cancer induction than adults for a given radiation dose. However, the strength of evidence varies by cancer site and questions remain about site-specific age at exposure patterns. For solid cancers, there is a large body of evidence that excess relative risk (ERR) diminishes with increasing age at exposure. This pattern of risk is observed in the Life Span Study (LSS) as well as in other radiation-exposed populations for overall solid cancer incidence and mortality and for most site-specific solid cancers. However, there are some disparities by endpoint in the degree of variation of ERR with exposure age, with some sites (e.g., colon, lung) in the LSS incidence data showing no variation, or even increasing ERR with increasing age at exposure. The pattern of variation of excess absolute risk (EAR) with age at exposure is often similar, with EAR for solid cancers or solid cancer mortality decreasing with increasing age at exposure in the LSS. We shall review the human data from the Japanese LSS cohort, and a variety of other epidemiological data sets, including a review of types of medical diagnostic exposures, also some radiobiological animal data, all bearing on the issue of variations of radiation late-effects risk with age at exposure and with attained age. The paper includes a summary of several oral presentations given in a Symposium on "Age effects on radiation response" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually on 3-6 October 2021.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric J. Grant
- Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | - Ritsu Sakata
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John Cologne
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Raquel Velazquez-Kronen
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Mai Utada
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kotaro Ozasa
- Radiation Effects Research Foundation, Hiroshima, Japan
| | - John D. Olson
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gregory O. Dugan
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|