1
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
2
|
Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, Xiao M. The gut microbiome changes in wild type and IL-18 knockout mice after 9.0 Gy total body irradiation. Anim Microbiome 2023; 5:42. [PMID: 37679818 PMCID: PMC10485964 DOI: 10.1186/s42523-023-00262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Recent studies have shown that gut microbiome plays important roles in response to radiation exposure. IL-18, an inflammatory cytokine, is highly elevated in mice, mini-pigs and nonhuman primates after radiation exposure. Blocking IL-18 using its endogenous binding protein (IL-18BP) increases mice survival after radiation exposure by decreasing bone marrow interferon-gamma levels. METHODS To further characterize the roles of IL-18 in response to radiation, both wild type and IL-18 knockout (IL-18 KO) mice were exposed to 9.0 Gy total body irradiation (TBI). The 30-day survival result demonstrated that IL-18 KO mice were significantly more resistant to radiation compared to the wild type mice (p < 0.0001). Mouse faecal samples were collected at pre-radiation (d0), d1, d3, d7, d14, d21 and d29 after radiation exposure. Microbiome profiling was performed on the faecal samples using 16S and ITS sequencing technology. RESULTS Data analysis showed that there was significant difference in the bacterial microbiome between wild type and IL-18 KO mice. Cohousing of wild type and IL-18 KO mice decreased the bacterial microbiome difference between the two genotypes. Much fewer bacterial genera were significantly changed in wild type mice than the IL-18 KO mice after radiation exposure. The different composition of the IL-18 KO mice and wild type mice persisted even after radiation exposure. Bacterial genera that significantly correlated with other genera were identified in the IL-18 KO and wild type mice. The metabolic pathways that differentially expressed in both genotypes were identified. The animal bacterial microbiome data could be used to predict the animal's radiation status. The fungal microbiome had no significant difference regarding genotype or time after radiation exposure. CONCLUSION The current study helps understand the gut microbiome in different genetic backgrounds and its temporal changes after radiation exposure. Our data provide insight into the mechanisms underlying radiation-induced toxicity and help identify bacteria important in response to radiation.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA.
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA
| | - Alex Zizzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, 20817, USA
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Bethesda, MD, 20889-5648, USA.
| |
Collapse
|
3
|
Gibbs A, Gupta P, Mali B, Poirier Y, Gopalakrishnan M, Newman D, Zodda A, Down JD, Serebrenik AA, Kaytor MD, Jackson IL. A C57L/J Mouse Model of the Delayed Effects of Acute Radiation Exposure in the Context of Evolving Multi-Organ Dysfunction and Failure after Total-Body Irradiation with 2.5% Bone Marrow Sparing. Radiat Res 2023; 199:319-335. [PMID: 36857032 PMCID: PMC10289057 DOI: 10.1667/rade-22-00178.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
The objective of the current study was to establish a mouse model of acute radiation syndrome (ARS) after total-body irradiation with 2.5% bone marrow sparing (TBI/BM2.5) that progressed to the delayed effects of acute radiation exposure, specifically pneumonitis and/or pulmonary fibrosis (DEARE-lung), in animals surviving longer than 60 days. Two hundred age and sex matched C57L/J mice were assigned to one of six arms to receive a dose of 9.5 to 13.25 Gy of 320 kV X-ray TBI/BM2.5. A sham-irradiated cohort was included as an age- and sex-matched control. Blood was sampled from the facial vein prior to irradiation and on days 5, 10, 15, 20, 25, and 30 postirradiation for hematology. Respiratory function was monitored at regular intervals throughout the in-life phase. Animals with respiratory dysfunction were administered a single 12-day tapered regimen of dexamethasone, allometrically scaled from a similar regimen in the non-human primate. All animals were monitored daily for up to 224 days postirradiation for signs of organ dysfunction and morbidity/mortality. At euthanasia due to criteria or at the study endpoint, wet lung weights were recorded, and blood sampled for hematology and serum chemistry. The left lung, heart, spleen, small and large intestine, and kidneys were processed for histopathology. A dose-response curve with the estimated lethal dose for 10-99% of animals with 95% confidence intervals was established. The median survival time was significantly prolonged in males as compared to females across the 10.25 to 12.5 Gy dose range. Animal sex played a significant role in overall survival, with males 50% less likely to expire prior to the study endpoint compared to females. All animals developed pancytopenia within the first one- to two-weeks after TBI/BM2.5 followed by a progressive recovery through day 30. Fourteen percent of animals expired during the first 30-days postirradiation due to ARS (e.g., myelosuppression, gastrointestinal tissue abnormalities), with most deaths occurring prior to day 15. Microscopic findings show the presence of radiation pneumonitis as early as day 57. At time points later than day 70, pneumonitis was consistently present in the lungs of mice and the severity was comparable across radiation dose arms. Pulmonary fibrosis was first noted at day 64 but was not consistently present and stable in severity until after day 70. Fibrosis was comparable across radiation dose arms. In conclusion, this study established a multiple organ injury mouse model that progresses through the ARS phase to DEARE-lung, characterized by respiratory dysfunction, and microscopic abnormalities consistent with radiation pneumonitis/fibrosis. The model provides a platform for future development of medical countermeasures for approval and licensure by the U.S. Food and Drug Administration under the animal rule regulatory pathway.
Collapse
Affiliation(s)
- Allison Gibbs
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Pawan Gupta
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Buddha Mali
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yannick Poirier
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Diana Newman
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Andrew Zodda
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Julian D. Down
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | |
Collapse
|
4
|
DiCarlo AL, Carnell LS, Rios CI, Prasanna PG. Inter-agency perspective: Translating advances in biomarker discovery and medical countermeasures development between terrestrial and space radiation environments. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:9-19. [PMID: 36336375 PMCID: PMC9832585 DOI: 10.1016/j.lssr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 05/22/2023]
Abstract
Over the past 20+ years, the U.S. Government has made significant strides in establishing research funding and initiating a portfolio consisting of subject matter experts on radiation-induced biological effects in normal tissues. Research supported by the National Cancer Institute (NCI) provided much of the early findings on identifying cellular pathways involved in radiation injuries, due to the need to push the boundaries to kill tumor cells while minimizing damage to intervening normal tissues. By protecting normal tissue surrounding the tumors, physicians can deliver a higher radiation dose to tumors and reduce adverse effects related to the treatment. Initially relying on this critical NCI research, the National Institute of Allergy and Infectious Diseases (NIAID), first tasked with developing radiation medical countermeasures in 2004, has provided bridge funding to move basic research toward advanced development and translation. The goal of the NIAID program is to fund approaches that can one day be employed to protect civilian populations during a radiological or nuclear incident. In addition, with the reality of long-term space flights and the possibility of radiation exposures to both acute, high-intensity, and chronic lower-dose levels, the National Aeronautics and Space Administration (NASA) has identified requirements to discover and develop radioprotectors and mitigators to protect their astronauts during space missions. In sustained partnership with sister agencies, these three organizations must continue to leverage funding and findings in their overlapping research areas to accelerate biomarker identification and product development to help safeguard these different and yet undeniably similar human populations - cancer patients, public citizens, and astronauts.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America.
| | - Lisa S Carnell
- Biological and Physical Sciences Division, National Aeronautics and Space Administration (NASA), 300 E Street SW, Washington, DC, 20546 United States of America
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America
| | - Pataje G Prasanna
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Bethesda, MD, 20892 United States of America
| |
Collapse
|