1
|
Wang Q, Cao B, Zhan J, Hu X, Yu Y, Li X, Liu Y. Sea Buckthorn Oil Promotes the PI3K-Akt-ERK Signaling Pathway and Macrophage M2 Polarization to Reduce Radiation-induced Skin Injury. Radiat Res 2024; 202:785-794. [PMID: 39343736 DOI: 10.1667/rade-23-00100.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/23/2024] [Indexed: 10/01/2024]
Abstract
In this work, we explored the role and mechanism of sea buckthorn oil in reducing radiation-induced skin damage. The radiation-induced rat skin injury model was established using strontium-90. Rats were treated with sea buckthorn oil twice a day postirradiation, and skin damage was observed at different times and evaluated using an injury score. Skin pathological changes were observed using hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry were used to detect the expression of vascular growth and pathway proteins. ELISA was used to detect the secretion level of inflammatory factors. Immunohistochemistry was used to detect macrophage polarization marker proteins. We found that sea buckthorn oil can alleviate radiation-induced skin damage, accelerate skin vascular regeneration, and promote the up-regulation of vascular endothelial growth factor (VEGF) and its receptor (VEGFR). These results demonstrate the beneficial effects of sea buckthorn oil on radiation-induced skin damage. Furthermore, the levels of IL-1β and TNF-α in the sea buckthorn oil treatment group were significantly lower than those in the control group, while the levels of IL-4 and IL10 were significantly higher (P < 0.05). CD206 expression also increased in the sea buckthorn oil treatment group, while CD16 expression decreased compared to the control group (P < 0.05). Western blotting showed that PI3K, Akt and ERK expression increased in the sea buckthorn oil treatment group (P < 0.05). The beneficial effect of sea buckthorn oil in reducing the inflammatory response in irradiated rats was diminished when they were treated with PI3K inhibitor. We conclude that sea buckthorn oil may regulate macrophage M2 polarization by increasing the PI3K-Akt-ERK signaling pathway, thereby inhibiting the inflammatory response and promoting skin vascular regeneration to prevent and treat radiation-induced skin damage.
Collapse
Affiliation(s)
- Qiu Wang
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Binyan Cao
- Emergency Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Junwei Zhan
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xinyu Hu
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yang Yu
- Nuclear Medicine Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xueyu Li
- Nursing Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Ying Liu
- Emergency Department of General Hospital of Northern Theater Command, Shenyang, 110016, China
| |
Collapse
|
2
|
Cui J, Wang TJ, Zhang YX, She LZ, Zhao YC. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomed Pharmacother 2024; 180:117470. [PMID: 39321513 DOI: 10.1016/j.biopha.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Radiotherapy-Induced Skin Injury (RISI) is radiation damage to normal skin tissue that primarily occurs during tumor Radiotherapy and occupational exposure. The risk of RISI is high due to the fact that the skin is not only the first body organ that ionizing radiation comes into contact with, but it is also highly sensitive to it, especially the basal cell layer and capillaries. Typical clinical manifestations of RISI include erythema, dry desquamation, moist desquamation, and ulcers, which have been established to significantly impact patient care and cancer treatment. Notably, our current understanding of RISI's pathological mechanisms and signaling pathways is inadequate, and no standard treatments have been established. Radiation-induced oxidative stress, inflammatory responses, fibrosis, apoptosis, and cellular senescence are among the known mechanisms that interact and promote disease progression. Additionally, radiation can damage all cellular components and induce genetic and epigenetic changes, which play a crucial role in the occurrence and progression of skin injury. A deeper understanding of these mechanisms and pathways is crucial for exploring the potential therapeutic targets for RISI. Therefore, in this review, we summarize the key mechanisms and potential treatment methods for RISI, offering a reference for future research and development of treatment strategies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yu-Xuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
3
|
Malekzadeh H, Surucu Y, Chinnapaka S, Yang KS, Arellano JA, Samadi Y, Epperly MW, Greenberger JS, Rubin JP, Ejaz A. Metformin and adipose-derived stem cell combination therapy alleviates radiation-induced skin fibrosis in mice. Stem Cell Res Ther 2024; 15:13. [PMID: 38185658 PMCID: PMC10773046 DOI: 10.1186/s13287-023-03627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Radiation therapy often leads to late radiation-induced skin fibrosis (RISF), causing movement impairment and discomfort. We conducted a comprehensive study to assess the effectiveness of metformin and adipose-derived stem cells (ASCs), whether autologous or allogeneic, individually or in combination therapy, in mitigating RISF. METHODS Using a female C57BL/6J mouse model subjected to hind limb irradiation as a representative RISF model, we evaluated metformin, ASCs, or their combination in two contexts: prophylactic (started on day 1 post-irradiation) and therapeutic (initiated on day 14 post-irradiation, coinciding with fibrosis symptoms). We measured limb movement, examined skin histology, and analyzed gene expression to assess treatment efficacy. RESULTS Prophylactic metformin and ASCs, whether autologous or allogeneic, effectively prevented late fibrosis, with metformin showing promising results. However, combination therapy did not provide additional benefits when used prophylactically. Autologous ASCs, alone or with metformin, proved most effective against late-stage RISF. Prophylactic intervention outperformed late therapy for mitigating radiation skin damage. Co-culture studies revealed that ASCs and metformin downregulated inflammation and fibrotic gene expression in both mouse and human fibroblasts. CONCLUSIONS Our study suggests metformin's potential as a prophylactic measure to prevent RISF, and the combination of ASCs and metformin holds promise for late-stage RISF treatment. These findings have clinical implications for improving the quality of life for those affected by radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Hamid Malekzadeh
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Yusuf Surucu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Katherine S Yang
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - José A Arellano
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Yasamin Samadi
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA
- McGowan Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, Pittsburgh, PA, 15261, USA.
| |
Collapse
|