1
|
Udroiu I, Sgura A. X-ray and DNA Damage: Limitations of the Dose as a Parameter for In Vitro Studies. Int J Mol Sci 2023; 24:16643. [PMID: 38068965 PMCID: PMC10706214 DOI: 10.3390/ijms242316643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
A century of studies has demonstrated that the magnitude of a radiation dose determines the extent of its biological effect. However, different types of radiation show different levels of effectiveness. Although all types of X-rays are usually considered to be equivalent, several authors have demonstrated an inverse relationship between photon energy and the biological effectiveness of the X-ray. Nonetheless, the differences among 50-100 keV X-rays are usually considered absent. However, comparing different types of X-rays with different energies is not easy since they are often used with different dose rates, and the latter can be a confounding factor. We compared the biological effectiveness of X-rays with different photon energies but with the same dose rate. Moreover, we also studied X-ray with different dose rates but the same photon energy. Biological effectiveness was assessed measuring DNA damage and cell survival. We confirmed that both the dose rate and photon energy influence the effectiveness of an X-ray. Moreover, we observed that differences in the 50-100 keV range are detectable after controlling for dose-rate variations. Our results, confirming those of previous studies in a more consistent way (and accompanied by hypotheses on the importance of the number of incident photons), underline the limitations of using the dose as the sole parameter for in vitro studies.
Collapse
Affiliation(s)
- Ion Udroiu
- Department of Sciences, Università Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy;
| | | |
Collapse
|
2
|
FLASH X-ray spares intestinal crypts from pyroptosis initiated by cGAS-STING activation upon radioimmunotherapy. Proc Natl Acad Sci U S A 2022; 119:e2208506119. [PMID: 36256824 PMCID: PMC9618056 DOI: 10.1073/pnas.2208506119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA-damaging treatments such as radiotherapy (RT) have become promising to improve the efficacy of immune checkpoint inhibitors by enhancing tumor immunogenicity. However, accompanying treatment-related detrimental events in normal tissues have posed a major obstacle to radioimmunotherapy and present new challenges to the dose delivery mode of clinical RT. In the present study, ultrahigh dose rate FLASH X-ray irradiation was applied to counteract the intestinal toxicity in the radioimmunotherapy. In the context of programmed cell death ligand-1 (PD-L1) blockade, FLASH X-ray minimized mouse enteritis by alleviating CD8+ T cell-mediated deleterious immune response compared with conventional dose rate (CONV) irradiation. Mechanistically, FLASH irradiation was less efficient than CONV X-ray in eliciting cytoplasmic double-stranded DNA (dsDNA) and in activating cyclic GMP-AMP synthase (cGAS) in the intestinal crypts, resulting in the suppression of the cascade feedback consisting of CD8+ T cell chemotaxis and gasdermin E-mediated intestinal pyroptosis in the case of PD-L1 blocking. Meanwhile, FLASH X-ray was as competent as CONV RT in boosting the antitumor immune response initiated by cGAS activation and achieved equal tumor control in metastasis burdens when combined with anti-PD-L1 administration. Together, the present study revealed an encouraging protective effect of FLASH X-ray upon the normal tissue without compromising the systemic antitumor response when combined with immunological checkpoint inhibitors, providing the rationale for testing this combination as a clinical application in radioimmunotherapy.
Collapse
|
3
|
Pérez-Amor MÁ, Barrios L, Armengol G, Barquinero JF. Differential Radiosensitizing Effect of 50 nm Gold Nanoparticles in Two Cancer Cell Lines. BIOLOGY 2022; 11:1193. [PMID: 36009820 PMCID: PMC9404963 DOI: 10.3390/biology11081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Radiation therapy is widely used as an anti-neoplastic treatment despite the adverse effects it can cause in non-tumoral tissues. Radiosensitizing agents, which can increase the effect of radiation in tumor cells, such as gold nanoparticles (GNPs), have been described. To evaluate the radiosensitizing effect of 50 nm GNPs, we carried out a series of studies in two neoplastic cell lines, Caco2 (colon adenocarcinoma) and SKBR3 (breast adenocarcinoma), qualitatively evaluating the internalization of the particles, determining with immunofluorescence the number of γ-H2AX foci after irradiation with ionizing radiation (3 Gy) and evaluating the viability rate of both cell lines after treatment by means of an MTT assay. Nanoparticle internalization varied between cell lines, though they both showed higher internalization degrees for functionalized GNPs. The γ-H2AX foci counts for the different times analyzed showed remarkable differences between cell lines, although they were always significantly higher for functionalized GNPs in both lines. Regarding cell viability, in most cases a statistically significant decreasing tendency was observed when treated with GNPs, especially those that were functionalized. Our results led us to conclude that, while 50 nm GNPs induce a clear radiosensitizing effect, it is highly difficult to describe the magnitude of this effect as universal because of the heterogeneity found between cell lines.
Collapse
Affiliation(s)
- Miguel Ángel Pérez-Amor
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Leonardo Barrios
- Unit of Cell Biology, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
4
|
Assessment of Radio-Induced Damage in Endothelial Cells Irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by Means of Micro and Nanodosimetric Calculations. Int J Mol Sci 2019; 20:ijms20246204. [PMID: 31835321 PMCID: PMC6940891 DOI: 10.3390/ijms20246204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The objective of this work was to study the differences in terms of early biological effects that might exist between different X-rays energies by using a mechanistic approach. To this end, radiobiological experiments exposing cell monolayers to three X-ray energies were performed in order to assess the yields of early DNA damage, in particular of double-strand breaks (DSBs). The simulation of these irradiations was set in order to understand the differences in the obtained experimental results. Hence, simulated results in terms of microdosimetric spectra and early DSB induction were analyzed and compared to the experimental data. Human umbilical vein endothelial cells (HUVECs) were irradiated with 40, 220 kVp, and 4 MV X-rays. The Geant4 Monte Carlo simulation toolkit and its extension Geant4-DNA were used for the simulations. Microdosimetric calculations aiming to determine possible differences in the variability of the energy absorbed by the irradiated cell population for those photon spectra were performed on 10,000 endothelial cell nuclei representing a cell monolayer. Nanodosimetric simulations were also carried out using a computation chain that allowed the simulation of physical, physico-chemical, and chemical stages on a single realistic endothelial cell nucleus model including both heterochromatin and euchromatin. DNA damage was scored in terms of yields of prompt DSBs per Gray (Gy) and per giga (109) base pair (Gbp) and DSB complexity was derived in order to be compared to experimental data expressed as numbers of histone variant H2AX (γ-H2AX) foci per cell. The calculated microdosimetric spread in the irradiated cell population was similar when comparing between 40 and 220 kVp X-rays and higher when comparing with 4 MV X-rays. Simulated yields of induced DSB/Gy/Gbp were found to be equivalent to those for 40 and 220 kVp but larger than those for 4 MV, resulting in a relative biological effectiveness (RBE) of 1.3. Additionally, DSB complexity was similar between the considered photon spectra. Simulated results were in good agreement with experimental data obtained by IRSN (Institut de radioprotection et de sûreté nucléaire) radiobiologists. Despite differences in photon energy, few differences were observed when comparing between 40 and 220 kVp X-rays in microdosimetric and nanodosimetric calculations. Nevertheless, variations were observed when comparing between 40/220 kVp and 4 MV X-rays. Thanks to the simulation results, these variations were able to be explained by the differences in the production of secondary electrons with energies below 10 keV.
Collapse
|
5
|
Freneau A, Dos Santos M, Voisin P, Tang N, Bueno Vizcarra M, Villagrasa C, Roy L, Vaurijoux A, Gruel G. Relation between DNA double-strand breaks and energy spectra of secondary electrons produced by different X-ray energies. Int J Radiat Biol 2018; 94:1075-1084. [PMID: 30257122 DOI: 10.1080/09553002.2018.1518612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Purpose: In a radiological examination, low-energy X-radiation is used (<100 keV). For other radiological procedures, the energy used is several MeV. ICRP in publication 103 has currently considered that photons irrespective of their energy have the same radiation weighting factor. Nevertheless, there are topological differences at the nanoscale of X-ray energy deposition as a function of its energy spectrum, meaning that the different interactions with living matter could vary in biological efficacy. Materials and methods: To study these differences, we characterized our irradiation conditions in terms of initial photon energies, but especially in terms of energy spectra of secondary electrons at the cell nucleus level, using Monte Carlo simulations. We evaluated signaling of DNA damage by monitoring a large number of γH2A.X foci after exposure of G0/G1-phase synchronized human primary endothelial cells from 0.25 to 5 Gy at 40 kV, 220 kV and 4 MV X-rays. Number and spatial distribution of γH2A.X foci were explored. In parallel, we investigated cell behavior through cell death and ability of a mother cell to produce two daughter cells. We also studied the missegregation rate after cell division. Results: We report a higher number of DNA double-strand breaks signaled by γH2A.X for 40 kVp and/or 220 kVp compared to 4 MVp for the highest tested doses of 2 and 5 Gy. We observed no difference between the biological endpoint studies with 40 kVp and 220 kVp X-ray spectra. This lack of difference could be explained by the relative similarity of the calculated energy spectra of secondary electrons at the cell monolayer. Conclusion: The energy spectrum of secondary electrons seems to be more closely related to the level of DNA damage measured by γH2A.X than the initial spectrum of photon energy or voltage settings. Our results indicate that as the energy spectrum of secondary electrons increases, the DNA damage signaled by γH2A.X decreases and this effect is observable beyond 220 kVp.
Collapse
Affiliation(s)
- Amelie Freneau
- a Department of Research in Radiobiology and Regenerative Medicine, Laboratory of Radiobiology of Accidental Exposition , Institute of Radioprotection and Nuclear Safety (IRSN) , Fontenay aux Roses cedex , France
| | - Morgane Dos Santos
- a Department of Research in Radiobiology and Regenerative Medicine, Laboratory of Radiobiology of Accidental Exposition , Institute of Radioprotection and Nuclear Safety (IRSN) , Fontenay aux Roses cedex , France
| | - Pascale Voisin
- a Department of Research in Radiobiology and Regenerative Medicine, Laboratory of Radiobiology of Accidental Exposition , Institute of Radioprotection and Nuclear Safety (IRSN) , Fontenay aux Roses cedex , France
| | - Nicolas Tang
- c Department of Dosimetry, Laboratory of Ionizing Radiation Dosimetry , Institute of Radioprotection and Nuclear Safety , Fontenay aux Roses cedex , France
| | - Marta Bueno Vizcarra
- c Department of Dosimetry, Laboratory of Ionizing Radiation Dosimetry , Institute of Radioprotection and Nuclear Safety , Fontenay aux Roses cedex , France
| | - Carmen Villagrasa
- c Department of Dosimetry, Laboratory of Ionizing Radiation Dosimetry , Institute of Radioprotection and Nuclear Safety , Fontenay aux Roses cedex , France
| | - Laurence Roy
- b Department of Research on the Biological and Health Effects of Ionizing Radiation , Institute of Radioprotection of Nuclear Safety (IRSN) , Fontenay aux Roses cedex , France
| | - Aurelie Vaurijoux
- a Department of Research in Radiobiology and Regenerative Medicine, Laboratory of Radiobiology of Accidental Exposition , Institute of Radioprotection and Nuclear Safety (IRSN) , Fontenay aux Roses cedex , France
| | - Gaetan Gruel
- a Department of Research in Radiobiology and Regenerative Medicine, Laboratory of Radiobiology of Accidental Exposition , Institute of Radioprotection and Nuclear Safety (IRSN) , Fontenay aux Roses cedex , France
| |
Collapse
|
6
|
de la Fuente Rosales L, Incerti S, Francis Z, Bernal MA. Accounting for radiation-induced indirect damage on DNA with the Geant 4-DNA code. Phys Med 2018; 51:108-116. [PMID: 29908994 DOI: 10.1016/j.ejmp.2018.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/02/2023] Open
Abstract
The use of Monte Carlo (MC) simulations remains a powerful tool to study the biological effects induced by ionizing radiation on living beings. Several MC codes are commonly used in research fields such as nanodosimetry, radiotherapy, radiation protection, and space radiation. This work presents an enhancement of an existing model [1] for radiobiological purposes, to account for the indirect DNA damage induced by ionizing particles. The Geant4-DNA simulation toolkit was used to simulate the physical, pre-chemical, and chemical stages of early DNA damage induced by protons and α-particles. Liquid water was used as the medium for simulations. Two phase-space files were generated, one containing the energy deposition events and another with the position of chemical species produced by water radiolysis from 0.1 ps up to 1 ns. These files were used as input in the radiobiological code that contains the genetic material model with atomic resolution, consisting of several copies of 30 nm chromatin fibers. The B-DNA configuration was used. This work focused on the indirect damage produced by the hydroxyl radical (OH) attack on the sugar-phosphate group. The approach followed to account for the indirect DNA damage was the same as those used by other radiobiological codes [2,3]. The critical parameter considered here was the reaction radius, which was calculated from the Smoluchowski's diffusion equation. Single, double, and total strand break yields produced by direct, indirect, and mixed mechanisms are reported. The obtained results are consistent with experimental and calculation data sets published in the literature.
Collapse
Affiliation(s)
| | | | - Ziad Francis
- Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut, Lebanon
| | - Mario A Bernal
- Departamento de Física Aplicada, Instituto de Física "Gleb Wataghin", UNICAMP, Campinas, Brazil
| |
Collapse
|
7
|
Colmenares R, Krupa K, Muñoz A, Blanco F, Williart A, García G. A process to describe radiation damage at the molecular level. Application to the 125I seeds in water. Appl Radiat Isot 2018; 140:163-170. [PMID: 30015047 DOI: 10.1016/j.apradiso.2018.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
The correlation between the absorbed energy and the induced biological damage still has unclear aspects, especially in the low energy and low dose rate irradiation regimes. From the knowledge of the molecular-induced effects (dissociations), it would be possible to better understand the side effects of radiation, such as induced cancers or damage to healthy tissue. With this in view, this paper presents results of a simulation of a 125I-seed treatment with an event-by-event MC code (LEPTS) specifically designed to account for the low energy secondary particle interactions, such as electron attachment, vibro-rotational and neutral dissociation interactions. This calculation allowed us to analyze the potential radiation damage not only in connection with the energy deposition, but also in terms of induced molecular dissociations by taking into account ionizing and non-ionizing dissociative processes. We propose that this description of the molecular level damage be the basis for nanodosimetric evaluations.
Collapse
Affiliation(s)
- R Colmenares
- Servicio de Radiofísica, Hospital Universitario Ramón y Cajal, Ctra Colmenar Viejo km 9.1, 28034 Madrid, Spain; Instituto de Física Fundamental (IFF), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain.
| | - K Krupa
- Instituto de Física Fundamental (IFF), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - A Muñoz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 22, 28040 Madrid, Spain
| | - F Blanco
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Williart
- Departamento de Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - G García
- Instituto de Física Fundamental (IFF), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| |
Collapse
|
8
|
Electronic brachytherapy for superficial and nodular basal cell carcinoma: a report of two prospective pilot trials using different doses. J Contemp Brachytherapy 2016; 8:48-55. [PMID: 26985197 PMCID: PMC4793064 DOI: 10.5114/jcb.2016.57531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022] Open
Abstract
Purpose Basal cell carcinoma (BCC) is a very common cancer in the Caucasian population. Treatment aims to eradicate the tumor with the lowest possible functional and aesthetic impact. Electronic brachytherapy (EBT) is a treatment technique currently emerging. This study aims to show the outcomes of two consecutive prospective pilot clinical trials using different radiation doses of EBT with Esteya® EB system for the treatment of superficial and nodular basal cell carcinoma. Material and methods Two prospective, single-center, non-randomized, pilot studies were conducted. Twenty patients were treated in each study with different doses. The first group (1) was treated with 36.6 Gy in 6 fractions of 6.1 Gy, and the second group (2) with 42 Gy in 6 fractions of 7 Gy. Cure rate, acute toxicity, and late toxicity related to cosmesis were analyzed in the two treatment groups. Results In group 1, a complete response in 90% of cases was observed at the first year of follow-up, whereas in group 2, the complete response was 95%. The differences with reference to acute toxicity and the cosmetic results between the two treatment groups were not statistically significant. Conclusions Our initial experience with Esteya® EB system to treat superficial and nodular BCC shows that a dose of 36.6 Gy and 42 Gy delivered in 6 fraction of 7 Gy achieves a 90% and 95% clinical cure rate at 1 year, respectively. Both groups had a tolerable toxicity and a very good cosmesis. The role of EBT in the treatment of BCC is still to be defined. It will probably become an established option for selected patients in the near future.
Collapse
|
9
|
White SA, Reniers B, de Jong EEC, Rusch T, Verhaegen F. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study. Phys Med Biol 2015; 61:383-99. [DOI: 10.1088/0031-9155/61/1/383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Mills CE, Thome C, Koff D, Andrews DW, Boreham DR. The Relative Biological Effectiveness of Low-Dose Mammography Quality X Rays in the Human Breast MCF-10A Cell Line. Radiat Res 2015; 183:42-51. [DOI: 10.1667/rr13821.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Depuydt J, Baert A, Vandersickel V, Thierens H, Vral A. Relative biological effectiveness of mammography X-rays at the level of DNA and chromosomes in lymphocytes. Int J Radiat Biol 2013; 89:532-8. [PMID: 23484479 DOI: 10.3109/09553002.2013.782447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In many countries, breast cancer screening programs based on periodic mammography exist, giving a large group of women regularly a small dose of ionizing radiation. In order to assess the benefit/risk ratio of those programs the relative biological effectiveness (RBE) of mammography X-rays needs to be determined. MATERIALS AND METHODS Blood of five healthy donors was irradiated in vitro with 30 kV X-rays and (60)Co γ-rays with doses between 5 and 2000 mGy. The phosphorylated histone subtype H2A isoform X-foci (γH2AX-foci) technique was used to quantify the number of DNA double-strand breaks (DSB) after irradiation. Chromosomal damage resulting from non- or misrepaired DNA DSB was quantified with the micronucleus (MN)-assay and the sensitivity was improved by counting only centromere negative micronuclei (MNCM-). RESULTS The threshold detection dose obtained with the γH2AX-foci test was 10 mGy for mammography X-rays compared to 50 mGy for γ-rays. With the MN-assay respectively MN-centromere-assay threshold detection doses of 100, respectively, 50 mGy were obtained for mammography X-rays compared to 200 respectively 100 mGy for γ-rays. An RBE of 1.4 was obtained with the γH2AX-foci assay. With the MN-assays low-dose RBE values between 3 and 4 were determined. CONCLUSION Our results indicate that exposure to mammography X-rays resulted in a modest increase in the induction of DSB compared to γ-rays. However, due to the higher linear energy transfer (LET) of mammography X-rays more clustered DNA damage is produced that is more difficult to repair and results in a more pronounced increase in micronucleus formation.
Collapse
Affiliation(s)
- Julie Depuydt
- Department of Basic Medical Sciences, University of Ghent, Belgium
| | | | | | | | | |
Collapse
|
12
|
Beyreuther E, Dörr W, Lehnert A, Lessmann E, Pawelke J. FISH-based analysis of 10- and 25-kV soft X-ray-induced DNA damage in 184A1 human mammary epithelial cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:33-42. [PMID: 22198086 DOI: 10.1007/s00411-011-0396-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
Over the past years, several in vitro studies have been performed on DNA damage induced by soft X-rays, especially in the energy range below 50 keV. Radiation effects originating from such low-energy photons are relevant in the context of medical diagnostics, for example, mammography, or of accidental exposure to scattered radiation. The present study was initiated to investigate the X-ray energy-dependent induction of stable and unstable chromosomal aberrations in the human mammary epithelial cell line 184A1. Three colour fluorescence in situ hybridisation was applied to identify chromosomal damage in chromosomes 1, 8 and 17, induced by 10-kV or 25-kV soft X-rays as well as by 200-kV X-rays as a reference quality. The overall results confirm the X-ray energy dependencies published for human lymphocytes showing increasing chromosomal aberration frequencies and higher aberration complexity with decreasing X-ray energy and increasing dose. Comparing the obtained dose dependencies, ratios of 0.84 ± 0.09 and 1.22 ± 0.18 were revealed for stable translocations induced by 25- and 10-kV X-rays, respectively, using 200-kV X-rays as reference. Moreover, the analysis of the minimum number of breaks required to form the visible chromosomal damage resulted in similar ratios of 0.93 ± 0.07 for 25-kV X-rays and 1.25 ± 0.10 for 10-kV X-rays relative to 200-kV X-rays. In addition, non-DNA-proportional contributions of chromosomes 8 and 17 to the whole DNA damage and deviations from the expected 1:1 ratio of translocations and dicentrics were observed for cell line 184A1.
Collapse
Affiliation(s)
- E Beyreuther
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
| | | | | | | | | |
Collapse
|
13
|
Bernal MA, deAlmeida CE, David M, Pires E. Estimation of the RBE of mammography-quality beams using a combination of a Monte Carlo code with a B-DNA geometrical model. Phys Med Biol 2011; 56:7393-403. [DOI: 10.1088/0031-9155/56/23/004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Bernal MA, deAlmeida CE, Sampaio C, Incerti S, Champion C, Nieminen P. The invariance of the total direct DNA strand break yield. Med Phys 2011; 38:4147-53. [DOI: 10.1118/1.3597568] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Bijwaard H, Dekkers F, van Dillen T. Modelling breast cancer in a TB fluoroscopy cohort: implications for the Dutch mammography screening. RADIATION PROTECTION DOSIMETRY 2011; 143:370-374. [PMID: 21217135 DOI: 10.1093/rpd/ncq468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Breast cancer incidence in a tuberculosis fluoroscopy cohort has been modelled with a two-stage carcinogenesis model. The relatively simple model, in which hormonal influences only affect the number of sensitive target cells, fits the data very well. Under the assumption that individual hormonal differences average out, and with a relative biological effectiveness for mammographic X rays of 1, the model yields ∼10 fatal breast cancer cases induced by the entire Dutch screening programme over a period of 25 y. This is much lower than derived from standard ICRP risk estimates and should be compared with the number of lives saved, which is estimated at ∼350 y(-1). As the extent of screening is currently being reconsidered in The Netherlands and elsewhere, this is an important result.
Collapse
Affiliation(s)
- Harmen Bijwaard
- Laboratory for Radiation Research, National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720 MA Bilthoven, The Netherlands.
| | | | | |
Collapse
|
16
|
Mestres M, Benkhaled L, Caballín MR, Barrios L, Ribas M, Barquinero JF. Induction of Incomplete and Complex Chromosome Aberrations by 30 kVp X Rays. Radiat Res 2011; 175:201-7. [DOI: 10.1667/rr2183.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Iwasaki T, Takashima Y, Suzuki T, Yoshida MA, Hayata I. The dose response of chromosome aberrations in human lymphocytes induced in vitro by very low-dose γ rays. Radiat Res 2010; 175:208-13. [PMID: 21268714 DOI: 10.1667/rr2097.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper considers the dose-effect relationship for unstable chromosome aberration yields in human lymphocytes in very low-dose range. Data are presented for (60)Co γ-ray doses of 0, 10, 20, 40 and 1000 mGy. More than 5,000 metaphases were scored for each data point at the very low doses, and each cell was double-checked using a semi-automated metaphase finding/relocation system. Aberration yields of dicentrics plus centric rings followed an excellent linear dose response down to zero dose; the yields were significantly above the control frequency from 20 mGy.
Collapse
Affiliation(s)
- Toshiyasu Iwasaki
- Central Research Institute of Electric Power Industry, 2-11-1 Iwadokita, Komae-shi, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Pinto MMPDL, Santos NFG, Amaral A. Current status of biodosimetry based on standard cytogenetic methods. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:567-81. [PMID: 20617329 DOI: 10.1007/s00411-010-0311-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/19/2010] [Indexed: 05/19/2023]
Abstract
Knowledge about dose levels in radiation protection is an important step for risk assessment. However, in most cases of real or suspected accidental exposures to ionizing radiation (IR), physical dosimetry cannot be performed for retrospective estimates. In such situations, biological dosimetry has been proposed as an alternative for investigation. Briefly, biodosimetry can be defined as individual dose evaluation based on biological endpoints induced by IR (so-called biomarkers). The relationship between biological endpoints and absorbed dose is not always straightforward: nausea, vomiting and diarrhoea, for example, are the most well-known biological effects of individual irradiation, but a precise correlation between those symptoms and absorbed dose is hardly achieved. The scoring of unstable chromosomal-type aberrations (such as dicentrics and rings) and micronuclei in mitogen-stimulated peripheral blood, up till today, has been the most extensively biodosimetry assay employed for such purposes. Dicentric assay is the gold standard in biodosimetry, since its presence is generally considered to be specific to radiation exposure; scoring of micronuclei (a kind of by-product of chromosomal damages) is easier and faster than that of dicentrics for dose assessment. In this context, the aim of this work is to present an overview on biodosimetry based on standard cytogenetic methods, highlighting its advantages and limitations as tool in monitoring of radiation workers' doses or investigation into accidental exposures. Recent advances and perspectives are also briefly presented.
Collapse
|
19
|
Abstract
Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation D(x) for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
20
|
Beyreuther E, Dörr W, Lehnert A, Lessmann E, Pawelke J. Relative biological effectiveness of 25 and 10 kV X-rays for the induction of chromosomal aberrations in two human mammary epithelial cell lines. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:333-340. [PMID: 19290536 DOI: 10.1007/s00411-009-0221-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 02/25/2009] [Indexed: 05/27/2023]
Abstract
Administration of ionizing radiation for diagnostic purposes can be associated with a risk for the induction of tumors. Therefore, particularly with regard to general screening programs, e.g. with mammography, cost-benefit considerations must be discussed including risk estimation depending upon the radiation quality administered. The present study was initiated to investigate the in vitro X-ray energy dependence for the induction of chromosomal aberrations in the two mammary epithelial cell lines, 184A1 and MCF-12A. The induced excess fragments, dicentric chromosomes and centric rings were analyzed and the relative biological effectiveness (RBE) was determined for 10 and 25 kV X-rays relative to 200 kV X-rays. The assumed energy dependence with higher values for 10 kV X-rays was confirmed for the excess fragments, with RBE(M) values of 1.92 +/- 0.26 and 1.40 +/- 0.12 for 10 kV X-rays and 1.17 +/- 0.12 and 0.97 +/- 0.10 for 25 kV photons determined for cell lines 184A1 and MCF-12A, respectively. Meaningful results for the induction of dicentric chromosomes and centric rings were obtained only for higher doses with RBE values of 1.31 +/- 0.21 and 1.70 +/- 0.29 for 184A1 and 1.08 +/- 0.08 and 1.43 +/- 0.12 for MCF-12A irradiated with 25 and 10 kV X-rays, respectively.
Collapse
Affiliation(s)
- Elke Beyreuther
- Institute of Radiation Physics, Forschungszentrum Dresden-Rossendorf, Dresden, Germany.
| | | | | | | | | |
Collapse
|