1
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
2
|
Wang X, Zhou Y, Sun Q, Zhang Q, Zhou H, Zhang J, Du Y, Wang Y, Yuan K, Xu L, Zhang M, Yan D, Zeng L, Xu K, Sang W. Thymosin β4 exerts cytoprotective function and attenuates liver injury in murine hepatic sinusoidal obstruction syndrome after hematopoietic stem cell transplantation. Transplant Cell Ther 2023:S2666-6367(23)01292-7. [PMID: 37192732 DOI: 10.1016/j.jtct.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is one of the life-threatening complications that may occur after hematopoietic stem cell transplantation (HSCT). Hepatic sinusoidal endothelial cells (HSECs) injury and liver fibrosis are key mechanisms of HSOS. Thymosin β4 (Tβ4) is an active polypeptide that functions in a variety of pathological and physiological states such as inflammation regulation, anti-apoptosis and anti-fibrosis. In this study, we found that Tβ4 can stimulate HSECs proliferation, migration and tube formation in vitro via activation of pro-survival signaling AKT (protein kinase B). In addition, Tβ4 resisted γ irradiation-induced HSECs growth arrest and apoptosis in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL) and B-cell lymphoma-2 (Bcl-2), which may be associated with activation of AKT. More importantly, Tβ4 significantly inhibited irradiation-induced proinflammatory cytokines in parallel with negative regulation of TLR4/MyD88/NF-κB and MAPK p38. Meanwhile, Tβ4 reduced intracellular reactive oxygen species production and upregulated antioxidants in HSECs. Additionally, Tβ4 inhibited irradiation-induced activation of hepatic stellate cells via downregulation expression of fibrogenic markers α-SMA, PAI-1 and TGF-β. In a murine HSOS model, levels of circulating alanine aminotransferase, aspartate aminotransferase, total bilirubin, and pro-inflammatory cytokines IL-6, IL-1β and TNF-α were significantly reduced after administration of Tβ4 peptide; further, Tβ4 treatment successfully ameliorated HSECs injury, inflammatory damage and fibrosis of murine liver. Taken together, Tβ4 stimulates proliferation and angiogenesis of HSECs, exerts cytoprotective effect and attenuates liver injury in murine HSOS model, which could be a potential strategy to prevent and treat HSOS after HSCT.
Collapse
Affiliation(s)
- Xiangmin Wang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Yi Zhou
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Qian Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Qing Zhang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Hongyuan Zhou
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Jiaoli Zhang
- Department of Rehabilitation, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuwei Du
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Yuhan Wang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Ke Yuan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Linyan Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Meng Zhang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China
| | - Lingyu Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China.
| | - Kailin Xu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China.
| | - Wei Sang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, China.
| |
Collapse
|
3
|
Gawali B, Sridharan V, Krager KJ, Boerma M, Pawar SA. TLR4-A Pertinent Player in Radiation-Induced Heart Disease? Genes (Basel) 2023; 14:genes14051002. [PMID: 37239362 DOI: 10.3390/genes14051002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The heart is one of the organs that is sensitive to developing delayed adverse effects of ionizing radiation (IR) exposure. Radiation-induced heart disease (RIHD) occurs in cancer patients and cancer survivors, as a side effect of radiation therapy of the chest, with manifestation several years post-radiotherapy. Moreover, the continued threat of nuclear bombs or terrorist attacks puts deployed military service members at risk of exposure to total or partial body irradiation. Individuals who survive acute injury from IR will experience delayed adverse effects that include fibrosis and chronic dysfunction of organ systems such as the heart within months to years after radiation exposure. Toll-like receptor 4 (TLR4) is an innate immune receptor that is implicated in several cardiovascular diseases. Studies in preclinical models have established the role of TLR4 as a driver of inflammation and associated cardiac fibrosis and dysfunction using transgenic models. This review explores the relevance of the TLR4 signaling pathway in radiation-induced inflammation and oxidative stress in acute as well as late effects on the heart tissue and the potential for the development of TLR4 inhibitors as a therapeutic target to treat or alleviate RIHD.
Collapse
Affiliation(s)
- Basveshwar Gawali
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kimberly J Krager
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, College of Pharmacy, the University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Snehalata A Pawar
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
4
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 2021; 7:244. [PMID: 34531376 PMCID: PMC8446062 DOI: 10.1038/s41420-021-00634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Bai L, Zhang J, Gao D, Liu C, Li W, Li Q. Downregulation of high mobility group box 1 enhances the radiosensitivity of non-small cell lung cancer by acting as a crucial target of microRNA-107. Exp Ther Med 2021; 22:679. [PMID: 33986844 PMCID: PMC8112155 DOI: 10.3892/etm.2021.10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/09/2021] [Indexed: 11/06/2022] Open
Abstract
High mobility group box 1 (HMGB1) has been reported to regulate the sensitivity of several types of cancer cell to chemoradiotherapy. The present study aimed to investigate the changes in HMGB1 expression after radiotherapy, as well as its regulatory role in the radiosensitivity of non-small cell lung cancer (NSCLC) cells. The expression levels of HMGB1 in the serum of 73 patients with NSCLC were analyzed by ELISA. HMGB1 mRNA and microRNA (miR)-107 expression in NSCLC cells were assessed using reverse transcription-quantitative PCR. Receiver operating characteristic analysis was used to evaluate the diagnostic value of HMGB1. Cell counting kit-8, Transwell invasion and clonogenic assays were used to determine cellular viability, invasiveness and colony formation ability, respectively. Following radiotherapy, the levels of HMGB1 were significantly decreased in the serum of patients with NSCLC, and lower serum levels had relatively high diagnostic accuracy in radiosensitive patients. Furthermore, HMGB1-knockdown retarded cellular proliferation and invasion with or without irradiation, and enhanced NSCLC cell radiosensitivity. Furthermore, knocking down miR-107 reversed the decreases in cellular proliferation and invasiveness both with and without irradiation, and reduced the survival fractions induced by sh-HMGB1. HMGB1-knockdown leads to radiosensitivity that may result from suppression of the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. Collectively, decreased expression of HMGB1 was found to be a putative diagnostic predictor of radiosensitivity in patients with NSCLC. HMGB1-knockdown inhibited the proliferation and enhanced the radiosensitivity of NSCLC cells, which may be regulated via miR-107 by mediating the TLR4/NF-κB signaling pathway. Thus, HMGB1 may be a potential regulator of radioresistance in NSCLC, and the HMGB1/miR-107 axis may represent a promising therapeutic target.
Collapse
Affiliation(s)
- Lu Bai
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jingjing Zhang
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Dongqi Gao
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Chengyi Liu
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Wenxin Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Qingshan Li
- Department of Oncology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
7
|
Ionizing radiation and toll like receptors: A systematic review article. Hum Immunol 2021; 82:446-454. [PMID: 33812705 DOI: 10.1016/j.humimm.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Ionizing radiation, including X and gamma rays, are used for various purposes such as; medicine, nuclear power, research, manufacturing, food preservation and construction. Furthermore, people are also exposed to ionizing radiation from their workplace or the environment. Apart from DNA fragmentation resulting in apoptosis, several additional mechanisms have been proposed to describe how radiation can alter human cell functions. Ionizing radiation may alter immune responses, which are the main cause of human disorders. Toll like receptors (TLRs) are important human innate immunity receptors which participate in several immune and non-immune cell functions including, induction of appropriate immune responses and immune related disorders. Based on the role played by ionizing radiation on human cell systems, it has been hypothesized that radiation may affect immune responses. Therefore, the main aim of this review article is to discuss recent information regarding the effects of ionizing radiation on TLRs and their related disorders.
Collapse
|
8
|
Niu H, Zhang L, Chen YH, Yuan BY, Wu ZF, Cheng JCH, Lin Q, Zeng ZC. Circular RNA TUBD1 Acts as the miR-146a-5p Sponge to Affect the Viability and Pro-Inflammatory Cytokine Production of LX-2 Cells through the TLR4 Pathway. Radiat Res 2020; 193:383-393. [PMID: 32097101 DOI: 10.1667/rr15550.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The functions and molecular mechanism of circRNAs in the development of radiation-induced liver disease (RILD) remain largely unknown. The goal of this study was to explore the expression and potential role of a new circular RNA, named circTUBD1, in irradiated and lipopolysaccharide (LPS)-stimulated human hepatic stellate cell (HSC) line LX-2 cells. The expression of circTUBD1 was significantly upregulated in irradiated and LPS-stimulated LX-2 cells compared to non-treated LX-2 cells. To explore the functions of circTUBD1, small interfering RNAs targeting circTUBD1 were designed. Silencing circTUBD1 inhibited proliferation, promoted apoptosis of LX-2 cells, and significantly decreased the expression level of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α in irradiated and LPS-stimulated LX-2 cells. Mechanistic analysis suggested that circTUBD1 acted as the miR-146a-5p sponge to affect pro-inflammatory cytokine production through regulating expression of Toll-like receptor 4 (TLR4), interleukin receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor-6 (TRAF6), and phosphorylation of nuclear factor-kappa B (pNF-κB) in irradiated and LPS-stimulated LX-2 cells. To our knowledge, this is the first study to show that circTUBD1 acts as a miR-146a-5p sponge to affect the viability and pro-inflammatory cytokine production of LX-2 cells through the TLR4 pathway, suggesting that circTUBD1 is a potential target for RILD therapy.
Collapse
Affiliation(s)
- Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Han Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bao-Ying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Wu ZF, Wang Y, Yang P, Hou JZ, Zhang JY, Hu Y, Zeng ZC. Toll-like receptor 4 and its associated proteins as prognostic factors for HCC treated by post-radiotherapy surgery. Oncol Lett 2018; 15:9599-9608. [PMID: 29928336 PMCID: PMC6004720 DOI: 10.3892/ol.2018.8583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 10/18/2017] [Indexed: 01/08/2023] Open
Abstract
Locally advanced hepatocellular carcinoma (HCC) treated by radiotherapy (RT) may be suited for further treatment with surgery. As a critical mediator of the post-RT immune response, Toll-like receptor 4 (TLR4) and its associated proteins may serve as prognostic factors for patients with HCC treated by post-RT surgery. In the present study, a total of 20 patients with HCC treated by post-RT surgery were enrolled. Resected tumor and peritumoral liver tissues were used to construct tissue microarrays that were assessed with immunohistochemical staining for the expression levels of TLR4, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and vascular endothelial growth factor receptor 2 (VEGFR2). The overall (OS) and disease-free (DFS) survival outcomes for each patient were assessed, and the severity of radiation-induced liver diseases (RILDs) was detected. The patients with low TLR4 or TRAIL expression exhibited significantly better OS times than those with high TLR4 (P=0.003) or TRAIL (P=0.007) expression, whereas the median DFS times for patients with low VEGFR2 or TRAIL were significantly longer than those with high VEGFR2 (P=0.003) or TRAIL (P=0.008) expression. No significant differences in OS or DFS times were identified according to the expression of TLR4, VEGFR2 or TRAIL in peritumoral liver tissue, although more severe RILDs were identified in patients with the high expression of these factors in the peritumoral liver tissue post-RT (P<0.05). Therefore, the expression levels of TLR4 and its associated proteins in HCC tumors may be suitable as prognostic factors for patients with HCC treated by post-RT surgery. The inhibition of TLR4, VEGFR2 and TRAIL expression in HCC and non-tumor liver tissue may lessen the severity of RILDs and improve survival outcomes in the future.
Collapse
Affiliation(s)
- Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ying Wang
- Department of Ultrasonography, Huashan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jia-Zhou Hou
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Ying Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Chen Y, Wu Z, Yuan B, Dong Y, Zhang L, Zeng Z. MicroRNA-146a-5p attenuates irradiation-induced and LPS-induced hepatic stellate cell activation and hepatocyte apoptosis through inhibition of TLR4 pathway. Cell Death Dis 2018; 9:22. [PMID: 29348414 PMCID: PMC5833436 DOI: 10.1038/s41419-017-0038-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Elevated toll-like receptor 4 (TLR4) expression is associated with a high risk of radiation-induced liver disease (RILD). MicroRNA (miR)-146a-5p is a key regulator of lipopolysaccharide (LPS)/TLR4 signaling, but its role in modulation of RILD remains unclear. Here, we found that irradiation and LPS stimulation induced TLR4 and miR-146a-5p expression in the human hepatic stellate cell (HSC) line LX2. Ectopic expression of miR-146a-5p in LX2 inhibited irradiation-induced and LPS-induced pro-inflammatory cytokine secretion and cell proliferation, and promoted cell apoptosis by down-regulating the expression levels of TLR4, interleukin-1 receptor associated kinase 1 (IRAK1), tumor necrosis factor receptor associated factor 6 (TRAF6) and phosphorylation of nuclear factor-kappa B. In addition, the culture medium from the irradiated and LPS-stimulated HSCs transfected with miR-146a-5p significantly attenuated apoptosis in irradiated hepatocytes. Overexpression of miR-146a-5p reduced α-smooth muscle actin production in irradiated and LPS-stimulated LX2 cells, which was associated with inhibition of TRAF6-mediated JNK and Smad2 phosphorylation. Knockdown of TRAF6 or IRAK1 mimicked the effects of miR-146a-5p on HSC function. Furthermore, miR-146a-5p treatment alleviated irradiation-induced and endotoxin-induced hepatic inflammatory response and fibrogenesis in mice through inhibition of the TLR4 signaling pathway. Collectively, this study reveals the anti-pro-inflammatory and anti-fibrotic effects of miR-146a-5p on liver injury, and suggests a potential application of miR-146a-5p in the therapeutic prevention of RILD.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, 200032, Shanghai, China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, 200032, Shanghai, China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, 200032, Shanghai, China
| | - Yinying Dong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, 200032, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, 200032, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180# Fenglin Road, 200032, Shanghai, China.
| |
Collapse
|