1
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Kolesnikova IA, Lalkovičova M, Severyukhin YS, Golikova KN, Utina DM, Pronskikh EV, Despotović SZ, Gaevsky VN, Pirić D, Masnikosa R, Budennaya NN. The Effects of Whole Body Gamma Irradiation on Mice, Age-Related Behavioral, and Pathophysiological Changes. Cell Mol Neurobiol 2023; 43:3723-3741. [PMID: 37402948 PMCID: PMC11410007 DOI: 10.1007/s10571-023-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co60 at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group. The radiation damage was confirmed by assessing the ratio of leukocytes in the peripheral blood of mice at a later date after exposure to Co60. After irradiation, a decrease in the glioneuronal complex was observed in the irritated group as well as histological changes of brain cells. To sum up, not only was the hematological status of mice altered upon the total gamma irradiation, but also their behavior, which was most probably due to significant alterations in the CNS. Study of influence of ionizing radiation on female mice, comparison between different age groups. Open Field test on the 30 days after 2 Gy of γ-rays and histological analysis indicated changes in behavioral patterns, leucocytes, and brain tissue.
Collapse
Affiliation(s)
- I A Kolesnikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - M Lalkovičova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198.
- Department of Physical Chemistry, Pavol Jozef Safarik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
| | - Yu S Severyukhin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - K N Golikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D M Utina
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - E V Pronskikh
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| | - Sanja Z Despotović
- Institute of Histology and Embryology, University of Belgrade, Belgrade, Serbia
| | - V N Gaevsky
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
| | - D Pirić
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - R Masnikosa
- Department of Physical Chemistry, Institute of Nuclear Sciences Vinča, National Institute of Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11001, Belgrade, Serbia
| | - N N Budennaya
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Russia, 14198
- State Budgetary Educational Institution of Higher Education of the Moscow Region University Dubna, Dubna, Russia
| |
Collapse
|
3
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
4
|
Cranial irradiation induces cognitive decline associated with altered dendritic spine morphology in the young rat hippocampus. Childs Nerv Syst 2022; 38:1867-1875. [PMID: 35962792 DOI: 10.1007/s00381-022-05646-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Therapeutic irradiation is commonly used to treat brain cancers but can induce cognitive dysfunction, especially in children. The mechanism is unknown but likely involves alterations in dendritic spine number and structure. METHODS To explore the impact of radiation exposure on the alteration of dendritic spine morphology in the hippocampus of young brains, 21-day-old Sprague-Dawley rats received cranial irradiation (10 Gy), and changes in spine density and morphology in dentate gyrus (DG) granules and CA1 pyramidal neurons were detected 1 and 3 months later by using Golgi staining. Moreover, we analyzed synapse-associated proteins within dendritic spines after irradiation. RESULT Our data showed that cognitive deficits were detected in young rats at both time points postirradiation, accompanied by morphological changes in dendritic spines. Our results revealed significant reductions in spine density in the DG at both 1 month (40.58%) and 3 months (28.92%) postirradiation. However, there was a decrease in spine density only at 1 month (33.29%) postirradiation in the basal dendrites of CA1 neurons and no significant changes in the apical dendrites of CA1 neurons at either time point. Notably, among our findings were the significant dynamic changes in spine morphology that persisted 3 months following cranial irradiation. Meanwhile, we found that depletion of the synapse-associated proteins PSD95 and Drebrin coincided with alterations in dendritic spines. CONCLUSION These data suggest that the decreased levels of PSD95 and Drebrin after ionizing radiation may cause changes in synaptic plasticity by affecting the morphological structure of dendritic spines, blocking the functional connectivity pathways of the brain and leading to cognitive impairment. Although the mechanism involved is unclear, understanding how ionizing radiation affects young brain hippocampal tissue may be useful to gain new mechanistic insights into radiation-induced cognitive dysfunction.
Collapse
|
5
|
Anatomic and metabolic alterations in the rodent frontal cortex caused by clinically relevant fractionated whole-brain irradiation. Neurochem Int 2022; 154:105293. [DOI: 10.1016/j.neuint.2022.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/20/2022]
|
6
|
Wang Y, Fang W, Wu L, Yao X, Wu S, Wang J, Xu Z, Tian F, He Z, Dong B. Neuroprotective effect of picroside II in brain injury in mice. Am J Transl Res 2016; 8:5532-5544. [PMID: 28078024 PMCID: PMC5209504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
Various types of brain injury which led to the damage of brain tissue structure and neurological dysfunction continues to be the major causes of disability and mortality. Picroside II (PII) possesses a wide range of pharmacological effects and has been proved to ameliorate ischemia and reperfusion injury of kidney and brain. However, critical questions remain about other brain injuries. We investigated the protective effect of PII in four well-characterized murine models of brain injury. Models showed a subsequent regional inflammatory response and oxidative stress in common, which might be improved by the administration of PII (20 mg/kg). Meanwhile, a series of morphological and histological analyses for reinforcement was performed. In traumatic, ischemic and infectious induced injuries, it was observed that the survival rate, apoptosis related proteins, Caspase-3, and the expression of acute inflammatory cytokines (IL-1β, IL-6 and TNF-α) were significantly alleviated after PII injection, but PII treatment alone showed no effect on them as well. The western blot results indicated that TLR4 and NF-κB were clearly downregulated with PII administration. In conclusion, our results suggested that PII with a recommended concentration of 20 mg/kg could provide neuroprotective effects against multi-cerebral injuries in mice by suppressing the over-reactive inflammatory responses and oxidative stress and attenuating the damage of brain tissue for further neurological recovery.
Collapse
Affiliation(s)
- Yida Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Wei Fang
- Department of Medicine, Hebei North UniversityZhangjiakou, Hebei, China
| | - Liang Wu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical UniversityXuzhou, China
| | - Xueya Yao
- Department of Medicine, Hebei North UniversityZhangjiakou, Hebei, China
| | - Suzhen Wu
- Department of Anesthesiology, Ningxiang People’s Hospital of Hunan ProvinceNingxiang, Hunan, China
| | - Jie Wang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Zhen Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Fubo Tian
- Department of Anesthesiology, Shanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghai, China
| | - Zhenzhou He
- Department of Anesthesiology and ICU, South Campus, Renji Hospital School of Medicine, Shanghai Jiao Tong UniversityChina
| | - Bin Dong
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
7
|
Brown RJ, Jun BJ, Cushman JD, Nguyen C, Beighley AH, Blanchard J, Iwamoto K, Schaue D, Harris NG, Jentsch JD, Bluml S, McBride WH. Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation. Int J Radiat Oncol Biol Phys 2016; 96:470-478. [PMID: 27478168 PMCID: PMC5563160 DOI: 10.1016/j.ijrobp.2016.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. METHODS AND MATERIALS Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. RESULTS Fractional anisotropy in the splenium of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. CONCLUSIONS The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.
Collapse
Affiliation(s)
- Robert J Brown
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California; Rudi Schulte Research Institute, Santa Barbara, California
| | - Brandon J Jun
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California; Rudi Schulte Research Institute, Santa Barbara, California
| | - Jesse D Cushman
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Christine Nguyen
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Adam H Beighley
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Johnny Blanchard
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kei Iwamoto
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dorthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA Center for the Health Sciences, Los Angeles, California
| | - James D Jentsch
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Stefan Bluml
- Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California; Rudi Schulte Research Institute, Santa Barbara, California
| | - William H McBride
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
8
|
Fernandez-Palomo C, Schültke E, Bräuer-Krisch E, Laissue JA, Blattmann H, Seymour C, Mothersill C. Investigation of Abscopal and Bystander Effects in Immunocompromised Mice After Exposure to Pencilbeam and Microbeam Synchrotron Radiation. HEALTH PHYSICS 2016; 111:149-159. [PMID: 27356059 DOI: 10.1097/hp.0000000000000525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Out-of-field effects are of considerable interest in radiotherapy. The mechanisms are poorly understood but are thought to involve signaling processes, which induce responses in non-targeted cells and tissues. The immune response is thought to play a role. The goal of this research was to study the induction of abscopal effects in the bladders of NU-Foxn1 mice after irradiating their brains using Pencil Beam (PB) or microbeam (MRT) irradiation at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Athymic nude mice injected with F98 glioma cells into their right cerebral hemisphere 7 d earlier were treated with either MRT or PB. After recovery times of 2, 12, and 48 h, the urinary bladders were extracted and cultured as tissue explants for 24 h. The growth medium containing the potential signaling factors was harvested, filtered, and transferred to HaCaT reporter cells to assess their clonogenic survival and calcium signaling potential. The results show that in the tumor-free mice, both treatment modalities produce strong bystander/abscopal signals using the clonogenic reporter assay; however, the calcium data do not support a calcium channel mediated mechanism. The presence of a tumor reduces or reverses the effect. PB produced significantly stronger effects in the bladders of tumor-bearing animals. The authors conclude that immunocompromised mice produce signals, which can alter the response of unirradiated reporter cells; however, a novel mechanism appears to be involved.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- *Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; †Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany; ‡European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France, §University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland; ** Niederwiesstrasse 13C, Untersiggenthal, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Tomé WA, Gökhan Ş, Gulinello ME, Brodin NP, Heard J, Mehler MF, Guha C. Hippocampal-dependent neurocognitive impairment following cranial irradiation observed in pre-clinical models: current knowledge and possible future directions. Br J Radiol 2015; 89:20150762. [PMID: 26514377 DOI: 10.1259/bjr.20150762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We reviewed the literature for studies pertaining to impaired adult neurogenesis leading to neurocognitive impairment following cranial irradiation in rodent models. This compendium was compared with respect to radiation dose, converted to equivalent dose in 2 Gy fractions (EQD2) to allow for direct comparison between studies. The effects of differences between animal species and the dependence on animal age as well as for time after irradiation were also considered. One of the major sites of de novo adult neurogenesis is the hippocampus, and as such, this review also focuses on assessing evidence related to the expression and potential effects of inflammatory cytokines on neural stem cells in the subgranular zone of the dentate gyrus and whether this correlates with neurocognitive impairment. This review also discusses potential strategies to mitigate the detrimental effects on neurogenesis and neurocognition resulting from cranial irradiation, and how the rationale for these strategies compares with the current outcome of pre-clinical studies.
Collapse
Affiliation(s)
- Wolfgang A Tomé
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA.,3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Şölen Gökhan
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria E Gulinello
- 4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - N Patrik Brodin
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - John Heard
- 2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| | - Mark F Mehler
- 3 Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.,4 Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,5 Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- 1 Institute for Onco-Physics, Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.,2 Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|