1
|
Schaue D, Micewicz ED, Ratikan JA, Iwamoto KS, Vlashi E, McDonald JT, McBride WH. NRF2 Mediates Cellular Resistance to Transformation, Radiation, and Inflammation in Mice. Antioxidants (Basel) 2022; 11:1649. [PMID: 36139722 PMCID: PMC9495793 DOI: 10.3390/antiox11091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is recognized as a master transcription factor that regulates expression of numerous detoxifying and antioxidant cytoprotective genes. In fact, models of NRF2 deficiency indicate roles not only in redox regulation, but also in metabolism, inflammatory/autoimmune disease, cancer, and radioresistancy. Since ionizing radiation (IR) generates reactive oxygen species (ROS), it is not surprising it activates NRF2 pathways. However, unexpectedly, activation is often delayed for many days after the initial ROS burst. Here, we demonstrate that, as assayed by γ-H2AX staining, rapid DNA double strand break (DSB) formation by IR in primary mouse Nrf2-/- MEFs was not affected by loss of NRF2, and neither was DSB repair to any great extent. In spite of this, basal and IR-induced transformation was greatly enhanced, suggesting that NRF2 protects against late IR-induced genomic instability, at least in murine MEFs. Another possible IR- and NRF2-related event that could be altered is inflammation and NRF2 deficiency increased IR-induced NF-κB pro-inflammatory responses mostly late after exposure. The proclivity of NRF2 to restrain inflammation is also reflected in the reprogramming of tumor antigen-specific lymphocyte responses in mice where Nrf2 k.o. switches Th2 responses to Th1 polarity. Delayed NRF2 responses to IR may be critical for the immune transition from prooxidant inflammation to antioxidant healing as well as in driving cellular radioresistance and survival. Targeting NRF2 to reprogram immunity could be of considerable therapeutic benefit in radiation and immunotherapy.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - Ewa D. Micewicz
- Biotts S.A., Ul. Wrocławska 44C, 55-040 Bielany Wrocławskie, Poland
| | - Josephine A. Ratikan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| | - J. Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington, DC 20057, USA
| | - William H. McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1714, USA
| |
Collapse
|
2
|
Iwamoto KS, Sandstrom RE, Bryan M, Liu Y, Elgart SR, Sheng K, Steinberg ML, McBride WH, Low DA. Weak Magnetic Fields Enhance the Efficacy of Radiation Therapy. Adv Radiat Oncol 2021; 6:100645. [PMID: 33748547 PMCID: PMC7966835 DOI: 10.1016/j.adro.2021.100645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose The clinical efficacy of radiation therapy is mechanistically linked to ionization-induced free radicals that cause cell and tissue injury through direct and indirect mechanisms. Free radical reaction dynamics are influenced by many factors and can be manipulated by static weak magnetic fields (WMF) that perturb singlet-triplet state interconversion. Our study exploits this phenomenon to directly increase ionizing radiation (IR) dose absorption in tumors by combining WMF with radiation therapy as a new and effective method to improve treatment. Methods and Materials Coils were custom made to produce both homogeneous and gradient magnetic fields. The gradient coil enabled simultaneous in vitro assessment of free radical/reactive oxygen species reactivity across multiple field strengths from 6 to 66 G. First, increases in IR-induced free radical concentrations using oxidant-sensitive fluorescent dyes in a cell-free system were measured and verified. Next, human and murine cancer cell lines were evaluated in in vitro and in vivo models after exposure to clinically relevant doses of IR in combination with WMF. Results Cellular responses to IR and WMF were field strength and cell line dependent. WMF was able to enhance IR effects on reactive oxygen species formation, DNA double-strand break formation, cell death, and tumor growth. Conclusions We demonstrate that the external presence of a magnetic field enhances radiation-induced cancer cell injury and death in vitro and in vivo. The effect extends beyond the timeframe when free radicals are induced in the presence of radiation into the window when endogenous free radicals are produced and therefore extends the applicability of this novel adjunct to cancer therapy in the context of radiation treatment.
Collapse
Affiliation(s)
- Keisuke S Iwamoto
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Mark Bryan
- Mark Bryan & Company LLC, Arcadia, California
| | - Yue Liu
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Robin Elgart
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael L Steinberg
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel A Low
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
3
|
Luitel K, Bozeman R, Kaisani A, Kim SB, Barron S, Richardson JA, Shay JW. Proton radiation-induced cancer progression. LIFE SCIENCES IN SPACE RESEARCH 2018; 19:31-42. [PMID: 30482279 DOI: 10.1016/j.lssr.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 06/09/2023]
Abstract
There are considerable health risks related to ionizing and proton radiation exposure. While there is a long history of health risks associated with ionizing (photon) radiation exposure, there is a limited understanding of the long-term health risks associated with proton radiation exposure. Since proton radiation is becoming more common in cancer therapy, the long-term biological effects of proton radiation remain less well characterized in terms of radiotherapy and well as for astronauts during deep space explorations. In this study, we compared the long-term side effects of proton radiation to equivalent doses of X-rays in the initiation and progression of premalignant lesions in a lung cancer susceptible mouse model (K-rasLA1). We show proton irradiation causes more complex DNA damage that is not completely repaired resulting in increased oxidative stress in the lungs both acutely and persistently. We further observed K-rasLA1 mice irradiated with protons had an increased number and size of initiated and premalignant lesions and adenomas that were often infiltrated with inflammatory cells. Proton irradiated mice had a lower median survival and increased carcinoma incidence as compared to unirradiated controls and X-rays exposed mice. Our conclusion is that exposure to proton irradiation enhances the progression of premalignant lesions to invasive carcinomas through persistent DNA damage, chronic oxidative stress, and immunosuppression.
Collapse
Affiliation(s)
- Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ronald Bozeman
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Aadil Kaisani
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Mothersill C, Smith R, Wang J, Rusin A, Fernandez-Palomo C, Fazzari J, Seymour C. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure. Dose Response 2018; 16:1559325817750067. [PMID: 29479295 PMCID: PMC5818098 DOI: 10.1177/1559325817750067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022] Open
Abstract
The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.
Collapse
Affiliation(s)
| | | | - Jiaxi Wang
- Department of Chemistry, Mass Spectrometry Facility, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|