1
|
Considerations for practical dose equivalent assessment of space radiation and exposure risk reduction in deep space. Sci Rep 2022; 12:13617. [PMID: 35948565 PMCID: PMC9365775 DOI: 10.1038/s41598-022-17079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Shielding from space radiation, especially galactic cosmic rays (GCRs), is a significant safety challenge for future human activities in deep space. In this study, the shielding performances of potential materials [aluminum (Al), polyethylene (PE), and carbon fiber reinforced plastic (CFRP)] were investigated using Geant4 Monte Carlo simulation considering two types of biological scale parameters, the International Commission on Radiological Protection (ICRP) quality factor (QFICRP) and the plausible biological effectiveness (RBEγacute), for GCRs. The effective dose equivalent was reduced by 50% for QFICRP and 38% for RBEγacute when shielding using 20 g/cm2 of CFRP. A spacecraft made from CFRP will have a better radiation shielding performance than conventional Al-based spacecraft. The contribution of heavy ions for QFICRP based effective dose equivalent was larger by a factor of ~ 3 compared to that for RBEγacute based effective dose equivalent. The shielding materials efficiently reduced the effective dose equivalent due to ions with QFICRP > 3.36 and RBEγacute > 2.26. QFICRP and RBEγacute have advantages and disadvantages in quantifying the dose equivalent of space radiation, and the establishment of a standard parameter specified for a mixed radiation environment occupied by protons and heavy ions is necessary for practical dose assessment in deep space.
Collapse
|
2
|
Matuo Y, Izumi Y, Furusawa Y, Shimizu K. Biological effects of carbon ion beams with various LETs on budding yeast Saccharomyces cerevisiae. Mutat Res 2017; 810:45-51. [PMID: 29146154 DOI: 10.1016/j.mrfmmm.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
Abstract
It has been established that irradiation with higher linear energy transfer (LET) increases lethality and mutagenicity more than that with lower LET. However, the characteristics specific to carbon ion beam have not yet been elucidated. Yeast cells were irradiated with carbon ions with an LET of 13 or 50keV/μm, and cell survival and mutation frequency were analyzed. The results, combined with our previous findings for ions with an LET of 107keV/μm, demonstrated that, in conjunction with an increase in LET, cell survival decreased, while mutation frequency increased. This indicates that a carbon ion beam with a higher LET is more mutagenic than one with a lower LET.
Collapse
Affiliation(s)
- Youichirou Matuo
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Fukui, 914-0055, Japan
| | - Yoshinobu Izumi
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Fukui, 914-0055, Japan
| | - Yoshiya Furusawa
- National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Kikuo Shimizu
- Radioisotope Research Center, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
3
|
Allen CP, Hirakawa H, Nakajima NI, Moore S, Nie J, Sharma N, Sugiura M, Hoki Y, Araki R, Abe M, Okayasu R, Fujimori A, Nickoloff JA. Low- and High-LET Ionizing Radiation Induces Delayed Homologous Recombination that Persists for Two Weeks before Resolving. Radiat Res 2017; 188:82-93. [PMID: 28535128 DOI: 10.1667/rr14748.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genome instability is a hallmark of cancer cells and dysregulation or defects in DNA repair pathways cause genome instability and are linked to inherited cancer predisposition syndromes. Ionizing radiation can cause immediate effects such as mutation or cell death, observed within hours or a few days after irradiation. Ionizing radiation also induces delayed effects many cell generations after irradiation. Delayed effects include hypermutation, hyper-homologous recombination, chromosome instability and reduced clonogenic survival (delayed death). Delayed hyperrecombination (DHR) is mechanistically distinct from delayed chromosomal instability and delayed death. Using a green fluorescent protein (GFP) direct repeat homologous recombination system, time-lapse microscopy and colony-based assays, we demonstrate that DHR increases several-fold in response to low-LET X rays and high-LET carbon-ion radiation. Time-lapse analyses of DHR revealed two classes of recombinants not detected in colony-based assays, including cells that recombined and then senesced or died. With both low- and high-LET radiation, DHR was evident during the first two weeks postirradiation, but resolved to background levels during the third week. The results indicate that the risk of radiation-induced genome destabilization via DHR is time limited, and suggest that there is little or no additional risk of radiation-induced genome instability mediated by DHR with high-LET radiation compared to low-LET radiation.
Collapse
Affiliation(s)
- Christopher P Allen
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Hirokazu Hirakawa
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Nakako Izumi Nakajima
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Sophia Moore
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Jingyi Nie
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Neelam Sharma
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Mayumi Sugiura
- c Division of Natural Sciences, Research Group of Biological Sciences, Nara Women's University, Nara, Japan
| | - Yuko Hoki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryoko Araki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Masumi Abe
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryuichi Okayasu
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Fujimori
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Jac A Nickoloff
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| |
Collapse
|
4
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
5
|
Grygoryev D, Gauny S, Lasarev M, Ohlrich A, Kronenberg A, Turker MS. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells. Mutat Res 2016; 788:32-40. [PMID: 27055360 DOI: 10.1016/j.mrfmmm.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing (48)Ti ions (1GeV/amu, LET=107 keV/μm), (56)Fe ions (1GeV/amu, LET=151 keV/μm) ions, or sparsely ionizing protons (1GeV, LET=0.24 keV/μm). The lowest doses for (48)Ti and (56)Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3-5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the (48)Ti and (56)Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Stacey Gauny
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michael Lasarev
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Anna Ohlrich
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
6
|
Cacao E, Hada M, Saganti PB, George KA, Cucinotta FA. Relative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints. PLoS One 2016; 11:e0153998. [PMID: 27111667 PMCID: PMC4844187 DOI: 10.1371/journal.pone.0153998] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022] Open
Abstract
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.
Collapse
Affiliation(s)
- Eliedonna Cacao
- Department of Health Physics and Diagnostics Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Megumi Hada
- Radiation Institute for Science and Engineering, Prairie View A&M University, Prairie View, Texas, United States of America
| | - Premkumar B. Saganti
- Radiation Institute for Science and Engineering, Prairie View A&M University, Prairie View, Texas, United States of America
| | | | - Francis A. Cucinotta
- Department of Health Physics and Diagnostics Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sishc BJ, Nelson CB, McKenna MJ, Battaglia CLR, Herndon A, Idate R, Liber HL, Bailey SM. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis. Front Oncol 2015; 5:257. [PMID: 26636039 PMCID: PMC4656829 DOI: 10.3389/fonc.2015.00257] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the radiation response and, as such, have compelling implications not only for accelerated tumor repopulation following radiation therapy but also for carcinogenic potential following low dose exposures as well, including those of relevance to spaceflight-associated galactic cosmic radiations.
Collapse
Affiliation(s)
- Brock J Sishc
- Division of Molecular Radiation Oncology, Department of Radiation Oncology, University of Texas Southwestern Medical Center Dallas , Dallas, TX , USA ; Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Miles J McKenna
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Christine L R Battaglia
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Andrea Herndon
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Rupa Idate
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Howard L Liber
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University , Fort Collins, CO , USA
| |
Collapse
|
8
|
Hryciw G, Grygoryev D, Lasarev M, Ohlrich A, Dan C, Madhira R, Eckelmann B, Gauny S, Kronenberg A, Turker MS. Accelerated (48)Ti Ions Induce Autosomal Mutations in Mouse Kidney Epithelium at Low Dose and Fluence. Radiat Res 2015; 184:367-77. [PMID: 26397174 DOI: 10.1667/rr14130.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to high-energy charged particles (HZE ions) at low fluence could significantly affect astronaut health after prolonged missions in deep space by inducing mutations and related cancers. We tested the hypothesis that the mutagenic effects of HZE ions could be detected at low fluence in a mouse model that detects autosomal mutations in vivo. Aprt heterozygous mice were exposed to 0.2, 0.4 and 1.4 Gy of densely ionizing (48)Ti ions (1 GeV/amu, LET = 107 keV/μm). We observed a dose-dependent increase in the Aprt mutant fraction in kidney epithelium at the two lowest doses (an average of 1 or 2 particles/cell nucleus) that plateaued at the highest dose (7 particles/cell nucleus). Mutant cells were expanded to determine mutation spectra and translocations affecting chromosome 8, which encodes Aprt. A PCR-based analysis for loss of heterozygosity (LOH) events on chromosome 8 demonstrated a significant shift in the mutational spectrum from Ti ion exposure, even at low fluence, by revealing "radiation signature" mutations in mutant cells from exposed mice. Likewise, a cytogenetic assay for nonreciprocal chromosome 8 translocations showed an effect of exposure. A genome-wide LOH assay for events affecting nonselected chromosomes also showed an effect of exposure even for the lowest dose tested. Considered in their entirety, these results show that accelerated (48)Ti ions induce large mutations affecting one or more chromosomes at low dose and fluence.
Collapse
Affiliation(s)
- Gwen Hryciw
- a Oregon Institute of Occupational Health Sciences and
| | | | | | - Anna Ohlrich
- a Oregon Institute of Occupational Health Sciences and
| | - Cristian Dan
- a Oregon Institute of Occupational Health Sciences and
| | - Ravi Madhira
- a Oregon Institute of Occupational Health Sciences and
| | | | - Stacey Gauny
- c Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Amy Kronenberg
- c Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mitchell S Turker
- a Oregon Institute of Occupational Health Sciences and.,b Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239; and
| |
Collapse
|