1
|
Badie C, Gale RP. What is radiation-induced acute myeloid leukaemia/can it be accurately identified? Leukemia 2025:10.1038/s41375-025-02561-2. [PMID: 40148557 DOI: 10.1038/s41375-025-02561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Christophe Badie
- Radiation Effects Department, Radiation, Chemicals, Climate and Environmental Hazards Directorate, UK Health Security Agency, Harwell campus, Chilton, Didcot, Oxfordshire, OX11 0RQ, UK.
| | - Robert Peter Gale
- Centre for Haematology, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
2
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
3
|
Jenni R, Chikhaoui A, Nabouli I, Zaouak A, Khanchel F, Hammami-Ghorbel H, Yacoub-Youssef H. Differential Expression of ATM, NF-KB, PINK1 and Foxo3a in Radiation-Induced Basal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24087181. [PMID: 37108343 PMCID: PMC10138907 DOI: 10.3390/ijms24087181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Imen Nabouli
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Fatma Khanchel
- Anatomopathology Department, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Hammami-Ghorbel
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| |
Collapse
|
4
|
Higa KC, Goodspeed A, Chavez JS, De Dominici M, Danis E, Zaberezhnyy V, Rabe JL, Tenen DG, Pietras EM, DeGregori J. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J Exp Med 2021; 218:212039. [PMID: 33914855 PMCID: PMC8094119 DOI: 10.1084/jem.20200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1β (IL-1β), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell–intrinsic competitive advantage; rather chronic IL-1β exposure engendered potent selection for Cebpa loss. Chronic IL-1β augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1β, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.
Collapse
Affiliation(s)
- Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Eric M Pietras
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Liu N, Peng Y, Zhong X, Ma Z, He S, Li Y, Zhang W, Gong Z, Yao Z. Effects of exposure to low-dose ionizing radiation on changing platelets: a prospective cohort study. Environ Health Prev Med 2021; 26:14. [PMID: 33494698 PMCID: PMC7836727 DOI: 10.1186/s12199-021-00939-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/18/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Numerous studies have concentrated on high-dose radiation exposed accidentally or through therapy, and few involve low-dose occupational exposure, to investigate the correlation between low-dose ionizing radiation and changing hematological parameters among medical workers. METHODS Using a prospective cohort study design, we collected health examination reports and personal dose monitoring data from medical workers and used Poisson regression and restricted cubic spline models to assess the correlation between changing hematological parameters and cumulative radiation dose and determine the dose-response relationship. RESULTS We observed that changing platelet of 1265 medical workers followed up was statistically different among the cumulative dose groups (P = 0.010). Although the linear trend tested was not statistically significant (Ptrend = 0.258), the non-linear trend tested was statistically significant (Pnon-linear = 0.007). Overall, there was a correlation between changing platelets and cumulative radiation dose (a change of βa 0.008 × 109/L during biennially after adjusting for gender, age at baseline, service at baseline, occupation, medical level, and smoking habits; 95% confidence interval [CI] = 0.003,0.014 × 109/L). Moreover, we also found positive first and then negative dose-response relationships between cumulative radiation dose and changing platelets by restricted cubic spline models, while there were negative patterns of the baseline service not less than 10 years (- 0.015 × 109/L, 95% CI = - 0.024, - 0.007 × 109/L) and radiation nurses(- 0.033 × 109/L, 95% CI = - 0.049, - 0.016 × 109/L). CONCLUSION We concluded that although the exposure dose was below the limit, medical workers exposed to low-dose ionizing radiation for a short period of time might have increased first and then decreased platelets, and there was a dose-response relationship between the cumulative radiation dose and platelets changing.
Collapse
Affiliation(s)
- Ning Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Yang Peng
- Cancer Research Centre, Cancer Council Queensland, Fortitude Valley, Brisbane, 4006 Australia
- School of Clinical Medicine, The University of Queensland, Herston, 4006 Australia
| | - Xinguang Zhong
- The Sixth People’s Hospital of Dongguan, Dongguan, 532008 Guangdong China
| | - Zheng Ma
- The Sixth People’s Hospital of Dongguan, Dongguan, 532008 Guangdong China
| | - Suiping He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Ying Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Wencui Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Zijun Gong
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Zhenjiang Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| |
Collapse
|
6
|
Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 2017; 130:1693-1698. [PMID: 28874349 DOI: 10.1182/blood-2017-06-780882] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for lifelong production of blood cells. At the same time, they must respond rapidly to acute needs such as infection or injury. Significant interest has emerged in how inflammation regulates HSC fate and how it affects the long-term functionality of HSCs and the blood system as a whole. Here we detail recent advances and unanswered questions at the intersection between inflammation and HSC biology in the contexts of development, aging, and hematological malignancy.
Collapse
|
7
|
Marongiu F, Serra MP, Fanti M, Cadoni E, Serra M, Laconi E. Regenerative Medicine: Shedding Light on the Link between Aging and Cancer. Cell Transplant 2017; 26:1530-1537. [PMID: 29113461 PMCID: PMC5680953 DOI: 10.1177/0963689717721224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023] Open
Abstract
The evidence linking aging and cancer is overwhelming. Findings emerging from the field of regenerative medicine reinforce the notion that aging and cancer are profoundly interrelated in their pathogenetic pathways. We discuss evidence to indicate that age-associated alterations in the tissue microenvironment contribute to the emergence of a neoplastic-prone tissue landscape, which is able to support the selective growth of preneoplastic cell populations. Interestingly, tissue contexts that are able to select for the growth of preneoplastic cells, including the aged liver microenvironment, are also supportive for the clonal expansion of normal, homotypic, transplanted cells. This suggests that the growth of normal and preneoplastic cells is possibly driven by similar mechanisms, implying that strategies based on principles of regenerative medicine might be applicable to modulate neoplastic disease.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Maria Paola Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Erika Cadoni
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Meyer JE, Finnberg NK, Chen L, Cvetkovic D, Wang B, Zhou L, Dong Y, Hallman MA, Ma CMC, El-Deiry WS. Tissue TGF-β expression following conventional radiotherapy and pulsed low-dose-rate radiation. Cell Cycle 2017; 16:1171-1174. [PMID: 28486014 DOI: 10.1080/15384101.2017.1317418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The release of inflammatory cytokines has been implicated in the toxicity of conventional radiotherapy (CRT). Transforming growth factor β (TGF-β) has been suggested to be a risk marker for pulmonary toxicity following radiotherapy. Pulsed low-dose rate radiotherapy (PLDR) is a technique that involves spreading out a conventional radiotherapy dose into short pulses of dose with breaks in between to reduce toxicities. We hypothesized that the more tolerable toxicity profile of PLDR compared with CRT may be related to differential expression of inflammatory cytokines such as TGF-β in normal tissues. To address this, we analyzed tissues from mice that had been subjected to lethal doses of CRT and PLDR by histology and immunohistochemistry (IHC). Equivalent physical doses of CRT triggered more cellular atrophy in the bone marrow, intestine, and pancreas when compared with PLDR as indicated by hematoxylin and eosin staining. IHC data indicates that TGF-β expression is increased in the bone marrow, intestine, and lungs of mice subjected to CRT as compared with tissues from mice subjected to PLDR. Our in vivo data suggest that differential expression of inflammatory cytokines such as TGF-β may play a role in the more favorable normal tissue late response following treatment with PLDR.
Collapse
Affiliation(s)
- Joshua E Meyer
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Niklas K Finnberg
- b Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania
| | - Lili Chen
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Dusica Cvetkovic
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Bin Wang
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Lanlan Zhou
- b Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania
| | - Yanqun Dong
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Mark A Hallman
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Chang-Ming C Ma
- a Radiation Oncology Department , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Wafik S El-Deiry
- b Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , Pennsylvania
| |
Collapse
|
9
|
In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia 2016; 31:1398-1407. [PMID: 27881872 DOI: 10.1038/leu.2016.344] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.
Collapse
|