1
|
Cui J, Wang TJ, Zhang YX, She LZ, Zhao YC. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomed Pharmacother 2024; 180:117470. [PMID: 39321513 DOI: 10.1016/j.biopha.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Radiotherapy-Induced Skin Injury (RISI) is radiation damage to normal skin tissue that primarily occurs during tumor Radiotherapy and occupational exposure. The risk of RISI is high due to the fact that the skin is not only the first body organ that ionizing radiation comes into contact with, but it is also highly sensitive to it, especially the basal cell layer and capillaries. Typical clinical manifestations of RISI include erythema, dry desquamation, moist desquamation, and ulcers, which have been established to significantly impact patient care and cancer treatment. Notably, our current understanding of RISI's pathological mechanisms and signaling pathways is inadequate, and no standard treatments have been established. Radiation-induced oxidative stress, inflammatory responses, fibrosis, apoptosis, and cellular senescence are among the known mechanisms that interact and promote disease progression. Additionally, radiation can damage all cellular components and induce genetic and epigenetic changes, which play a crucial role in the occurrence and progression of skin injury. A deeper understanding of these mechanisms and pathways is crucial for exploring the potential therapeutic targets for RISI. Therefore, in this review, we summarize the key mechanisms and potential treatment methods for RISI, offering a reference for future research and development of treatment strategies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yu-Xuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
Saul-McBeth J, Dillon J, Launder D, Hickey M, Yi EMC, Daboul Y, Biswas P, Salari E, Parsai EI, Conti HR. Radiation Exposure Perturbs IL-17RA-Mediated Immunity Leading to Changes in Neutrophil Responses That Increase Susceptibility to Oropharyngeal Candidiasis. J Fungi (Basel) 2022; 8:jof8050495. [PMID: 35628751 PMCID: PMC9144824 DOI: 10.3390/jof8050495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Fungal infections caused by Candida albicans are a serious problem for immunocompromised individuals, including those undergoing radiotherapy for head and neck cancers. Targeted irradiation causes inflammatory dysregulation and damage to the oral mucosa that can be exacerbated by candidiasis. Post-irradiation the cytokine interleukin-17 (IL-17) protects the oral mucosae by promoting oral epithelial regeneration and balancing the oral immune cell populations, which leads to the eventual healing of the tissue. IL-17 signaling is also critical for the antifungal response during oropharyngeal candidiasis (OPC). Yet, the benefit of IL-17 during other forms of candidiasis, such as vulvovaginal candidiasis, is not straightforward. Therefore, it was important to determine the role of IL-17 during OPC associated with radiation-induced inflammatory damage. To answer this question, we exposed Il17ra−/− and wild-type mice to head-neck irradiation (HNI) and OPC to determine if the IL-17 signaling pathway was still protective against C. albicans. HNI increased susceptibility to OPC, and in Il17ra−/− mice, the mucosal damage and fungal burden were elevated compared to control mice. Intriguingly, neutrophil influx was increased in Il17ra−/− mice, yet these cells had reduced capacity to phagocytose C. albicans and failed to clear OPC compared to immunocompetent mice. These findings suggest that radiotherapy not only causes physical damage to the oral cavity but also skews immune mediators, leading to increased susceptibility to oropharyngeal candidiasis.
Collapse
Affiliation(s)
- Jessica Saul-McBeth
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - John Dillon
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Maura Hickey
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Elise Mein-Chiain Yi
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Yusuf Daboul
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Priosmita Biswas
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Elahheh Salari
- Department of Radiation Oncology, Division of Medical Physics, The University of Toledo, Toledo, OH 43606, USA; (E.S.); (E.I.P.)
| | - E. Ishmael Parsai
- Department of Radiation Oncology, Division of Medical Physics, The University of Toledo, Toledo, OH 43606, USA; (E.S.); (E.I.P.)
| | - Heather R. Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
- Correspondence:
| |
Collapse
|
3
|
Soriano-Ruiz JL, Suñer-Carbó J, Calpena-Campmany AC, Bozal-de Febrer N, Halbaut-Bellowa L, Boix-Montañés A, Souto EB, Clares-Naveros B. Clotrimazole multiple W/O/W emulsion as anticandidal agent: Characterization and evaluation on skin and mucosae. Colloids Surf B Biointerfaces 2018; 175:166-174. [PMID: 30530002 DOI: 10.1016/j.colsurfb.2018.11.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
Clotrimazole (CLT) was formulated in a multiple W/O/W emulsion (ME) with the aim of evaluating its potential as topical anticandidal agent and comparing with marketed products. A previously evaluated CLT-ME was selected and physicochemically characterized. The in vitro release behavior and the ex vivo permeation profiles were assessed using Franz diffusion cells using three different types of biological membranes: human skin and porcine buccal, sublingual and vaginal mucosae. The antifungal activity against Candida strains was also tested. Results showed CLT-MEs sizes of 29.206 and 47.678 μm with skin compatible pH values of 6.47 and 6.42 exhibiting high zeta potential values of -55.13 and -55.59 mV with dependence on the pH variation. The physicochemical stability was kept for a period of 180 days of storage at room temperature. CLT-MEs exhibited pseudoplastic behavior with hysteresis areas and viscosities of 286 and 331 mPa⋅s showing higher spreadability properties than commercial counterparts. An improved CLT release pattern was supplied by the ME system following a hyperbolic model. Likewise, ME system gave higher skin permeation flux of CLT than commercial reference. CLT amounts retained in the skin and mucosae were also higher than commercial references, which coupled with the higher antimycotic efficacy make CLT-MEs a great tool for clinical investigation of topical candidiasis treatments.
Collapse
Affiliation(s)
- José L Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Ana C Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Lyda Halbaut-Bellowa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain
| | - Antonio Boix-Montañés
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Soriano-Ruiz JL, Calpena-Capmany AC, Cañadas-Enrich C, Febrer NBD, Suñer-Carbó J, Souto EB, Clares-Naveros B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. Int J Pharm 2018; 554:105-115. [PMID: 30395953 DOI: 10.1016/j.ijpharm.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022]
Abstract
Clotrimazole (CLT) was formulated in a nanoemulsion (NE) for the topical treatment of candidiasis consisting of 10% labrafac® lipophile, 60% labrasol®:capryol® 90 mixture (ratio 4:1) and 30% propylene glycol. Physicochemical properties, stability, rheology, in vitro drug release, ex vivo drug permeation through human skin and porcine buccal, sublingual and vaginal mucosae, antifungal efficacy, as well as in vivo skin tolerance were evaluated. 1% CLT-NE (CLT-NE1) and 2% CLT-NE (CLT-NE2) exhibited 153 ± 17.25 and 186 ± 15.38 nm droplet sizes, low polydispersity indexes, negative zeta potentials and biocompatible pH values. The CLT-NEs exhibited typical Newtonian profiles with viscosities of 42.14 ± 0.037 mPa·s and 41.35 ± 0.041 mPa·s, respectively and higher extensibility properties than commercial counterparts retaining their physicochemical properties for 180 days. NEs provided a sustained release of drug according to the first order model. Similar skin permeation properties were observed between CLT-NE1 and commercial reference. However, significant higher CLT amounts retained in mucosae were provided by CLT-NE2 when compared with references. Antifungal efficacies were also higher than commercial references, and the in vivo tolerance study confirmed the suitability for topical application, making CLT-NEs a great tool for clinical investigation of topical candidiasis treatments.
Collapse
Affiliation(s)
- José L Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain
| | - Ana C Calpena-Capmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain
| | - Cristina Cañadas-Enrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071 Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 645 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Garrett J, Sampson CH, Plett PA, Crisler R, Parker J, Venezia R, Chua HL, Hickman DL, Booth C, MacVittie T, Orschell CM, Dynlacht JR. Characterization and Etiology of Swollen Muzzles in Irradiated Mice. Radiat Res 2018; 191:31-42. [PMID: 30339056 DOI: 10.1667/rr14724.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several investigators performing bone marrow transplantation studies have previously reported sporadic increases in mortality that were associated with pronounced swelling in the face, head and neck of mice. Over the past few years, we and others have noted an increasing number of experiments in which mice that have received total-body irradiation (TBI) or partial-body irradiation (PBI) develop swollen muzzles, drastic thickening of the upper lip and redness, bruising and/or swelling around the nose and muzzle and sometimes over the top of the head. We refer to this rapid and extreme swelling after irradiation as swollen muzzle syndrome (SMS). The development of SMS postirradiation is associated with morbidity that occurs earlier than would be expected from the traditional hematopoietic acute radiation syndrome (H-ARS), and has impeded studies in several laboratories attempting to evaluate medical countermeasures (MCM) against radiation. However, little has been done to characterize this somewhat unpredictable radiation effect. To investigate the cause and etiology of SMS, data from three different laboratories collected over a seven-year period from 100 MCM 30-day survival studies using mice from different vendors were retrospectively analyzed to determine the time of onset, progression and incidence of SMS in male and female mice exposed to various doses of ionizing radiation. An additional study compared incidence and etiology of SMS in mice from two different vendors (identified as vendors A and B) after exposure to the LD50/30 (X rays). Mice presenting with SMS, as well as non-SMS (irradiated) control mice, were necropsied to determine microbial status of the blood, heart, spleen, liver, kidney and muzzle tissue. Only mice from vendor A (20%) developed SMS. While the number of bacterial species isolated from various tissues of SMS and non-SMS mice was not different, the number of tissues positive for bacteria was significantly greater in SMS mice. At least one tissue in 83% of SMS mice from vendor A tested positive for Streptococcus agalactiae [group B beta Streptococcus (GBS)], compared to 25% of non-SMS mice from vendor A, and 0% of non-SMS mice from vendor B. In addition, all mice from vendor A with SMS had at least one tissue with >104 CFU/g, with GBS as the predominant bacterium, compared to only 25% of non-SMS mice from vendor A, and 0% of non-SMS mice from vendor B. The incidence and magnitude of GBS growth in cultures correlated with the onset of SMS; the earliest and heaviest infections occurred in mice presenting with SMS on days 5-6 postirradiation. The majority of SMS mice (5 out of 6) had positive blood cultures, with the same bacterial strain isolated from other tissues, suggesting systemic translocation via the bloodstream. We propose that testing of mice and the identification of the microorganisms frequently associated with SMS may provide guidance for selection of antimicrobials for use by other investigators in studies evaluating potential MCM, and for the ordering, handling and care of immunodeficient mice or mice that are to be rendered immunodeficient after acute irradiation.
Collapse
Affiliation(s)
- Joy Garrett
- a Indiana University School of Medicine, Indianapolis, Indiana
| | - Carol H Sampson
- a Indiana University School of Medicine, Indianapolis, Indiana
| | - P Artur Plett
- a Indiana University School of Medicine, Indianapolis, Indiana
| | - Robin Crisler
- a Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey Parker
- b University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard Venezia
- b University of Maryland School of Medicine, Baltimore, Maryland
| | - Hui Lin Chua
- a Indiana University School of Medicine, Indianapolis, Indiana
| | - Debra L Hickman
- a Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Thomas MacVittie
- b University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
6
|
da Silva EM, Kischkel B, Shinobu-Mesquita CS, Bonfim-Mendonça PS, Mansano ES, da Silva MA, Barbosa JF, Fiorini A, Hernandes L, Furlaneto MC, Svidzinski TI. γ-irradiation from radiotherapy improves the virulence potential of Candida tropicalis. Future Microbiol 2017; 12:1467-1486. [PMID: 29110510 DOI: 10.2217/fmb-2017-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate if radiation used in radiotherapy can cause changes in the virulence potential of Candida tropicalis ATCC 750. MATERIALS & METHODS C. tropicalis was exposed in vitro to identical dose and scheme of irradiation would be used in patients with head and neck cancer. Some virulence parameters were analyzed before and after irradiation. RESULTS Colony morphologies were irreversibly affected by irradiation. Increase in growth rate, filamentation, adhesion on cell lines and phagocytosis process were also observed. Overall the irradiated C. tropicalis cells became more efficient at causing systemic infection in mice. CONCLUSION γ-radiation induced important changes in C. tropicalis increasing its virulence profile, which could directly affect the relationship between yeasts and hosts.
Collapse
Affiliation(s)
- Eliane M da Silva
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Brenda Kischkel
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Cristiane S Shinobu-Mesquita
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Patrícia S Bonfim-Mendonça
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Elaine Sb Mansano
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| | | | | | - Adriana Fiorini
- Department of Microbiology, Universidade Federal do Paraná, Setor Palotina, Paraná, Brazil
| | - Luzmarina Hernandes
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Marcia C Furlaneto
- Department of Microbiology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Terezinha Ie Svidzinski
- Department of Clinical Analysis & Biomedicine/Postgraduate Program in Biosciences & Pathophysiology, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Avenida Colombo, 5790, Maringá, PR, CEP 87020-900, Brazil
| |
Collapse
|