1
|
Alcocer-Ávila ME, Larouze A, Groetz JE, Hindié E, Champion C. Physics and small-scale dosimetry of α $\alpha$ -emitters for targeted radionuclide therapy: The case of 211 At $^{211}{\rm At}$. Med Phys 2024; 51:5007-5019. [PMID: 38478014 DOI: 10.1002/mp.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Monte Carlo simulations have been considered for a long time the gold standard for dose calculations in conventional radiotherapy and are currently being applied for the same purpose in innovative radiotherapy techniques such as targeted radionuclide therapy (TRT). PURPOSE We present in this work a benchmarking study of the latest version of the Transport d'Ions Lourds Dans l'Aqua & Vivo (TILDA-V ) Monte Carlo track structure code, highlighting its capabilities for describing the full slowing down of α $\alpha$ -particles in water and the energy deposited in cells by α $\alpha$ -emitters in the context of TRT. METHODS We performed radiation transport simulations of α $\alpha$ -particles (10 keVu - 1 ${\rm u}^{-1}$ -100 MeVu - 1 ${\rm u}^{-1}$ ) in water with TILDA-V and the Particle and Heavy Ion Transport code System (PHITS) version 3.33. We compared the predictions of each code in terms of track parameters (stopping power, range and radial dose profiles) and cellular S-values of the promising radionuclide astatine-211 (211 At $^{211}{\rm At}$ ). Additional comparisons were made with available data in the literature. RESULTS The stopping power, range and radial dose profiles of α $\alpha$ -particles computed with TILDA-V were in excellent agreement with other calculations and available data. Overall, minor differences with PHITS were ascribed to phase effects, that is, related to the use of interaction cross sections computed for water vapor or liquid water. However, important discrepancies were observed in the radial dose profiles of monoenergetic α $\alpha$ -particles, for which PHITS results showed a large underestimation of the absorbed dose compared to other codes and experimental data. The cellular S-values of211 At $^{211}{\rm At}$ computed with TILDA-V agreed within 4% with the values predicted by PHITS and MIRDcell. CONCLUSIONS The validation of the TILDA-V code presented in this work opens the possibility to use it as an accurate simulation tool for investigating the interaction of α $\alpha$ -particles in biological media down to the nanometer scale in the context of medical research. The code may help nuclear medicine physicians in their choice of α $\alpha$ -emitters for TRT. Further research will focus on the application of TILDA-V for quantifying radioinduced damage on the deoxyribonucleic acid (DNA) molecule.
Collapse
Affiliation(s)
| | - Alexandre Larouze
- Université de Bordeaux, Centre Lasers Intenses et Applications (UMR CNRS/CEA 5107), Talence, France
| | - Jean-Emmanuel Groetz
- Université de Bourgogne Franche-Comté, Laboratoire Chrono-Environnement (UMR CNRS 6249), Besançon Cedex, France
| | - Elif Hindié
- Université de Bordeaux, INCIA, CHU de Bordeaux - Service de Médecine Nucléaire, Pessac, France
- Institut Universitaire de France, Paris Cedex 05, France
| | - Christophe Champion
- Université de Bordeaux, Centre Lasers Intenses et Applications (UMR CNRS/CEA 5107), Talence, France
| |
Collapse
|
2
|
Gape PMD, Schultz MK, Stasiuk GJ, Terry SYA. Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review. Pharmaceuticals (Basel) 2024; 17:334. [PMID: 38543120 PMCID: PMC10974115 DOI: 10.3390/ph17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols.
Collapse
Affiliation(s)
- Paul M. D. Gape
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Michael K. Schultz
- Departments of Radiology, Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA;
- Perspective Therapeutics, Coralville, IA 52241, USA
| | - Graeme J. Stasiuk
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Samantha Y. A. Terry
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| |
Collapse
|
3
|
Lee D, Li M, Liu D, Baumhover NJ, Sagastume EA, Marks BM, Rastogi P, Pigge FC, Menda Y, Johnson FL, Schultz MK. Structural modifications toward improved lead-203/lead-212 peptide-based image-guided alpha-particle radiopharmaceutical therapies for neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2024; 51:1147-1162. [PMID: 37955792 PMCID: PMC10881741 DOI: 10.1007/s00259-023-06494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The lead-203 (203Pb)/lead-212 (212Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that 212Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr3-octreotide (TOC)-based radiopharmaceuticals. METHODS New SSTR2-targeted peptides were designed and synthesized with the goal of optimizing the incorporation of Pb isotopes through the use of a modified cyclization technique; the introduction of a Pb-specific chelator (PSC); and the insertion of polyethylene glycol (PEG) linkers. The binding affinity of the peptides and the cellular uptake of 203Pb-labeled peptides were evaluated using pancreatic AR42J (SSTR2+) tumor cells and the biodistribution and imaging of the 203Pb-labeled peptides were assessed in an AR42J tumor xenograft mouse model. A lead peptide was identified (i.e., PSC-PEG2-TOC), which was then further evaluated for efficacy in 212Pb therapy studies. RESULTS The lead radiopeptide drug conjugate (RPDC) - [203Pb]Pb-PSC-PEG2-TOC - significantly improved the tumor-targeting properties, including receptor binding and tumor accumulation and retention as compared to [203Pb]Pb-DOTA0-Tyr3-octreotide (DOTATOC). Additionally, the modified RPDC exhibited faster renal clearance than the DOTATOC counterpart. These advantageous characteristics of [212Pb]Pb-PSC-PEG2-TOC resulted in a dose-dependent therapeutic effect with minimal signs of toxicity in the AR42J xenograft model. Fractionated administrations of 3.7 MBq [212Pb]Pb-PSC-PEG2-TOC over three doses further improved anti-tumor effectiveness, resulting in 80% survival (70% complete response) over 120 days in the mouse model. CONCLUSION Structural modifications to chelator and linker compositions improved tumor targeting and pharmacokinetics (PK) of 203/212Pb peptide-based radiopharmaceuticals for NET theranostics. These findings suggest that PSC-PEG2-TOC is a promising candidate for Pb-based targeted radionuclide therapy for NETs and other types of cancers that express SSTR2.
Collapse
Affiliation(s)
- Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul, Republic of Korea
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | - Dijie Liu
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | | | | | | | - Prerna Rastogi
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - F Christopher Pigge
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA
| | - Yusuf Menda
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Michael K Schultz
- Perspective Therapeutics, Inc., Coralville, IA, USA.
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA.
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- Department of Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
4
|
Zimmermann R. Is 212Pb Really Happening? The Post- 177Lu/ 225Ac Blockbuster? J Nucl Med 2024; 65:176-177. [PMID: 38176723 DOI: 10.2967/jnumed.123.266774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Richard Zimmermann
- Chrysalium Consulting, Lalaye, France;
- MEDraysintell, Louvain-la-Neuve, Belgium; and
- Oncidium Foundation, Mont-Saint-Guibert, Belgium
| |
Collapse
|
5
|
Mourtada F, Tomiyoshi K, Sims-Mourtada J, Mukai-Sasaki Y, Yagihashi T, Namiki Y, Murai T, Yang DJ, Inoue T. Actinium-225 Targeted Agents: Where Are We Now? Brachytherapy 2023; 22:697-708. [PMID: 37690972 PMCID: PMC10840862 DOI: 10.1016/j.brachy.2023.06.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 09/12/2023]
Abstract
α-particle targeted radionuclide therapy has shown promise for optimal cancer management, an exciting new era for brachytherapy. Alpha-emitting nuclides can have significant advantages over gamma- and beta-emitters due to their high linear energy transfer (LET). While their limited path length results in more specific tumor 0kill with less damage to surrounding normal tissues, their high LET can produce substantially more lethal double strand DNA breaks per radiation track than beta particles. Over the last decade, the physical and chemical attributes of Actinium-225 (225Ac) including its half-life, decay schemes, path length, and straightforward chelation ability has peaked interest for brachytherapy agent development. However, this has been met with challenges including source availability, accurate modeling for standardized dosimetry for brachytherapy treatment planning, and laboratory space allocation in the hospital setting for on-demand radiopharmaceuticals production. Current evidence suggests that a simple empirical approach based on 225Ac administered radioactivity may lead to inconsistent outcomes and toxicity. In this review article, we highlight the recent advances in 225Ac source production, dosimetry modeling, and current clinical studies.
Collapse
Affiliation(s)
- Firas Mourtada
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA.
| | - Katsumi Tomiyoshi
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | - Yuki Mukai-Sasaki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Takayuki Yagihashi
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yuta Namiki
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Taro Murai
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - David J Yang
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tomio Inoue
- Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
6
|
Koniar H, Miller C, Rahmim A, Schaffer P, Uribe C. A GATE simulation study for dosimetry in cancer cell and micrometastasis from the 225Ac decay chain. EJNMMI Phys 2023; 10:46. [PMID: 37525027 PMCID: PMC10390455 DOI: 10.1186/s40658-023-00564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Radiopharmaceutical therapy (RPT) with alpha-emitting radionuclides has shown great promise in treating metastatic cancers. The successive emission of four alpha particles in the 225Ac decay chain leads to highly targeted and effective cancer cell death. Quantifying cellular dosimetry for 225Ac RPT is essential for predicting cell survival and therapeutic success. However, the leading assumption that all 225Ac progeny remain localized at their target sites likely overestimates the absorbed dose to cancer cells. To address limitations in existing semi-analytic approaches, this work evaluates S-values for 225Ac's progeny radionuclides with GATE Monte Carlo simulations. METHODS The cellular geometries considered were an individual cell (10 µm diameter with a nucleus of 8 µm diameter) and a cluster of cells (micrometastasis) with radionuclides localized in four subcellular regions: cell membrane, cytoplasm, nucleus, or whole cell. The absorbed dose to the cell nucleus was scored, and self- and cross-dose S-values were derived. We also evaluated the total absorbed dose with various degrees of radiopharmaceutical internalization and retention of the progeny radionuclides 221Fr (t1/2 = 4.80 m) and 213Bi (t1/2 = 45.6 m). RESULTS For the cumulative 225Ac decay chain, our self- and cross-dose nuclear S-values were both in good agreement with S-values published by MIRDcell, with per cent differences ranging from - 2.7 to - 8.7% for the various radionuclide source locations. Source location had greater effects on self-dose S-values than the intercellular cross-dose S-values. Cumulative 225Ac decay chain self-dose S-values increased from 0.167 to 0.364 GyBq-1 s-1 with radionuclide internalization from the cell surface into the cell. When progeny migration from the target site was modelled, the cumulative self-dose S-values to the cell nucleus decreased by up to 71% and 21% for 221Fr and 213Bi retention, respectively. CONCLUSIONS Our GATE Monte Carlo simulations resulted in cellular S-values in agreement with existing MIRD S-values for the alpha-emitting radionuclides in the 225Ac decay chain. To obtain accurate absorbed dose estimates in 225Ac studies, accurate understanding of daughter migration is critical for optimized injected activities. Future work will investigate other novel preclinical alpha-emitting radionuclides to evaluate therapeutic potency and explore realistic cellular geometries corresponding to targeted cancer cell lines.
Collapse
Affiliation(s)
- Helena Koniar
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| | - Cassandra Miller
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Functional Imaging, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
7
|
Wang Y, Kong D, Gao H, Du C, Xue H, Liu K, Kong X, Zhang W, Yin Y, Wu T, Jiao Y, Sun L. Multiple Mesh-type Real Human Cell Models for Dosimetric Application Coupled with Monte Carlo Simulations. Radiat Res 2023; 200:176-187. [PMID: 37410090 DOI: 10.1667/rade-23-00020.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
The mesh-type models are superior to voxel models in cellular dose assessment coupled with Monte Carlo codes. The aim of this study was to expand the micron-scale mesh-type models based on the fluorescence tomography of real human cells, and to investigate the feasibility of these models in the application of various irradiation scenarios and Monte Carlo codes. Six different human cell lines, including pulmonary epithelial BEAS-2B, embryonic kidney 293T, hepatocyte L-02, B-lymphoblastoid HMy2.CIR, Gastric mucosal GES-1, and intestine epithelial FHs74Int, were adopted for single mesh-type models reconstruction and optimization based on laser confocal tomography images. Mesh-type models were transformed into the format of polygon mesh and tetrahedral mesh for the GATE and PHITS Monte Carlo codes, respectively. The effect of model reduction was analyzed by dose assessment and geometry consideration. The cytoplasm and nucleus doses were obtained by designating monoenergetic electrons and protons as external irradiation, and S values with different "target-source" combinations were calculated by assigning radioisotopes as internal exposure. Four kinds of Monte Carlo codes were employed, i.e., GATE with "Livermore," "Standard" and "Standard and Geant4-DNA mixed" models for electrons and protons, as well as PHITS with "EGS" mode for electrons and radioisotopes. Multiple mesh-type real human cellular models can be applied to Monte Carlo codes directly without voxelization when combined with certain necessary surface reduction. Relative deviations between different cell types were observed among various irradiation scenarios. The relative deviation of nucleus S value reaches up to 85.65% between L-02 and GES-1 cells by 3H for the "nucleus-nucleus" combination, while that of 293T and FHs74Int nucleus dose for external beams at a 5.12 cm depth of water is 106.99%. Nucleus with smaller volume is far more affected by physical codes. There is a considerable deviation for dose within BEAS-2B at the nanoscale. The multiple mesh-type real cell models were more versatile than voxel models and mathematical models. The present study provided several models which can easily be extended to other cell types and irradiation scenarios for RBE estimations and biological effect predictions, including radiation biological experiments, radiotherapy and radiation protection.
Collapse
Affiliation(s)
- YiDi Wang
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Dong Kong
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - ChuanSheng Du
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - HuiYuan Xue
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Kun Liu
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - XiangHui Kong
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - WenYue Zhang
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - YuChen Yin
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Tao Wu
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, Suzhou, China
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
8
|
Li M, Baumhover NJ, Liu D, Cagle BS, Boschetti F, Paulin G, Lee D, Dai Z, Obot ER, Marks BM, Okeil I, Sagastume EA, Gabr M, Pigge FC, Johnson FL, Schultz MK. Preclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics. Pharmaceutics 2023; 15:414. [PMID: 36839736 PMCID: PMC9966725 DOI: 10.3390/pharmaceutics15020414] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023] Open
Abstract
203Pb and 212Pb have emerged as promising theranostic isotopes for image-guided α-particle radionuclide therapy for cancers. Here, we report a cyclen-based Pb specific chelator (PSC) that is conjugated to tyr3-octreotide via a PEG2 linker (PSC-PEG-T) targeting somatostatin receptor subtype 2 (SSTR2). PSC-PEG-T could be labeled efficiently to purified 212Pb at 25 °C and also to 212Bi at 80 °C. Efficient radiolabeling of mixed 212Pb and 212Bi in PSC-PEG-T was also observed at 80 °C. Post radiolabeling, stable Pb(II) and Bi(III) radiometal complexes in saline were observed after incubating [203Pb]Pb-PSC-PEG-T for 72 h and [212Bi]Bi-PSC-PEG-T for 5 h. Stable [212Pb]Pb-PSC-PEG-T and progeny [212Bi]Bi-PSC-PEG-T were identified after storage in saline for 24 h. In serum, stable radiometal/radiopeptide were observed after incubating [203Pb]Pb-PSC-PEG-T for 55 h and [212Pb]Pb-PSC-PEG-T for 24 h. In vivo biodistribution of [212Pb]Pb-PSC-PEG-T in tumor-free CD-1 Elite mice and athymic mice bearing AR42J xenografts revealed rapid tumor accumulation, excellent tumor retention and fast renal clearance of both 212Pb and 212Bi, with no in vivo redistribution of progeny 212Bi. Single-photon emission computed tomography (SPECT) imaging of [203Pb]Pb-PSC-PEG-T and [212Pb]Pb-PSC-PEG-T in mice also demonstrated comparable accumulation in AR42J xenografts and renal clearance, confirming the theranostic potential of the elementally identical 203Pb/212Pb radionuclide pair.
Collapse
Affiliation(s)
- Mengshi Li
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | | | - Dijie Liu
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Brianna S. Cagle
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | | | | | - Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea
| | - Zhiming Dai
- Department of Chemistry, The University of Iowa, Iowa City, IA 52240, USA
| | - Ephraim R. Obot
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Brenna M. Marks
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Ibrahim Okeil
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Edwin A. Sagastume
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Michael K. Schultz
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
- Department of Radiology, The University of Iowa, Iowa City, IA 52246, USA
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
9
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
10
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Li M, Liu D, Lee D, Cheng Y, Baumhover NJ, Marks BM, Sagastume EA, Ballas ZK, Johnson FL, Morris ZS, Schultz MK. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13153676. [PMID: 34359580 PMCID: PMC8345035 DOI: 10.3390/cancers13153676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Radiation therapy and immune checkpoint inhibitors (ICIs) have been demonstrated to cooperatively activate adaptive anti-tumor immunity with curative potential in preclinical models of melanoma. Receptor-targeted radionuclide therapy can be systemically injected to selectively deliver ionizing radiation to tumor sites throughout the body, potentially rendering all tumor sites more susceptible to anti-tumor immune response. In this study, we demonstrated the feasibility of delivering alpha-particle radiation to murine melanoma tumors using a 212Pb radiolabeled peptide [212Pb]VMT01 that targets the melanocortin 1 receptor (MC1R). Our data showed anti-tumor cooperation between [212Pb]VMT01 and ICIs in melanoma, mediated by induction of tumor-specific immunity. The immunogenicity of [212Pb]VMT01 in melanoma was also evidenced by enhanced tumor infiltrating lymphocytes and tumor vaccination assays. Abstract Radiotherapy can facilitate the immune recognition of immunologically “cold” tumors and enhance the efficacy of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors (ICIs) in melanoma. Systemic administration of receptor-targeted radionuclide therapy has the potential to selectively deliver radionuclides to multiple tumors throughout the body in metastatic settings. By triggering immunologic cell death and increasing the immune susceptibility of surviving tumor cells in these locations, targeted radionuclide therapies may overcome resistance to ICIs and render immunologically “cold” tumors throughout the body responsive to ICIs and immunologically “hot”. Here, we show the anti-tumor cooperation of targeted α-particle radionuclide therapy (α-TRT) and ICIs in preclinical models of melanoma. Melanocortin 1 receptor (MC1R)-targeted radiopeptide [212Pb]VMT01 was employed to deliver α-radiation to melanoma tumors in mice. A single injection of 4.1 MBq [212Pb]VMT01 significantly slowed the tumor growth of B16-F10 melanoma and the combination of [212Pb]VMT01 and ICIs induced a cooperative anti-tumor effect leading to 43% complete tumor response with no sign of malignancy on autopsy. Animals with complete response developed anti-tumor immunity to reject further tumor inoculations. This therapeutic cooperation was completely abolished in RAG1 KO mice, which are deficient in T-cell maturation. In addition, the anti-tumor cooperation was compromised when fractionated [212Pb]VMT01 was used in the combination. We also demonstrated that [212Pb]VMT01 induced immunogenic cell death in tumor vaccination assays and in vitro exposure to [212Pb]VMT01 sensitized immunotolerant melanoma to ICIs treatment in vivo. Enhanced tumor infiltrating CD3+, CD4+, CD8+ lymphocytes were observed following injection of 1.4 MBq [212Pb]VMT01. Overall, we demonstrated anti-tumor cooperation between α-TRT and ICIs in melanoma that is mediated by tumor specific immunity.
Collapse
Affiliation(s)
- Mengshi Li
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Dijie Liu
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Dongyoul Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Yinwen Cheng
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas J. Baumhover
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
| | - Brenna M. Marks
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
| | - Edwin A. Sagastume
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
| | - Zuhair K. Ballas
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Zachary S. Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Michael K. Schultz
- Viewpoint Molecular Targeting, Inc., Coralville, IA 52241, USA; (M.L.); (D.L.); (N.J.B.); (B.M.M.); (E.A.S.); (F.L.J.)
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA;
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(865)-356-1861
| |
Collapse
|
12
|
Medical application of particle and heavy ion transport code system PHITS. Radiol Phys Technol 2021; 14:215-225. [PMID: 34195914 DOI: 10.1007/s12194-021-00628-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo simulation code that has been applied in various areas of medical physics. These include application in different types of radiotherapy, shielding calculations, application to radiation biology, and research and development of medical tools. In this article, the useful features of PHITS are explained by referring to actual examples of various medical applications.
Collapse
|
13
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
14
|
Abstract
Prostate-specific membrane antigen (PSMA)-targeting radio-ligand therapy with beta-emitting 177Lutetium has already been investigated in several early phase dosimetry studies, demonstrated promising results in phase-2, and recently the first phase-3 trial finished recruitment. In contrast, PSMA-targeting alpha-particle therapy (TAT) has only been evaluated in few preclinical experiments, preliminary dosimetry attempts and some retrospective observational studies, yet. First clinical experience with 225Ac-PSMA-617 demonstrates promising antitumor activity with a 63%-70% PSA>50%-response rate, 10-15 months duration of response and complete remissions in approximately ten percent of patients, some of them with enduring relapse-free survival. Nevertheless, without comparative trials there is no prove whether, applied in identical clinical situations, 225Ac-PSMA-617 is really more efficiently than 177Lu-PSMA-617 or vice versa. However, there is some good rationale, that PSMA-TAT might have advantages in particular clinical indications. This includes patients with diffuse type red-marrow infiltration by reducing off-target radiation to surrounding cells; ablation of micrometastases after favorable response to other previous therapy or someday in early stage disease. Also treatment escalation of patients, either with poor response to 177Lu-PSMA or harboring adverse prognostic biomarkers, appears promising. In preclinical research, alpha-radiation demonstrated stronger induction of abscopal effects than beta-radiation; favoring its usage as a combination partner with immunotherapies. So, further evaluation of PSMA-TAT is definitely warranted. Recently, de-escalated treatment protocols and application of 225Ac/177Lu-PSMA "cocktail"-regimens improved the tolerability of 225Ac-PSMA-617 TAT, reducing the risk for development dry-mouth syndrome. This opens new avenues for future application in earlier stage disease.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany; Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | | |
Collapse
|
15
|
Li M, Sagastume EE, Lee D, McAlister D, DeGraffenreid AJ, Olewine KR, Graves S, Copping R, Mirzadeh S, Zimmerman BE, Larsen R, Johnson FL, Schultz MK. 203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Curr Med Chem 2020; 27:7003-7031. [PMID: 32720598 PMCID: PMC10613023 DOI: 10.2174/0929867327999200727190423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Receptor-targeted image-guided Radionuclide Therapy (TRT) is increasingly recognized as a promising approach to cancer treatment. In particular, the potential for clinical translation of receptor-targeted alpha-particle therapy is receiving considerable attention as an approach that can improve outcomes for cancer patients. Higher Linear-energy Transfer (LET) of alpha-particles (compared to beta particles) for this purpose results in an increased incidence of double-strand DNA breaks and improved-localized cancer-cell damage. Recent clinical studies provide compelling evidence that alpha-TRT has the potential to deliver a significantly more potent anti-cancer effect compared with beta-TRT. Generator-produced 212Pb (which decays to alpha emitters 212Bi and 212Po) is a particularly promising radionuclide for receptor-targeted alpha-particle therapy. A second attractive feature that distinguishes 212Pb alpha-TRT from other available radionuclides is the possibility to employ elementallymatched isotope 203Pb as an imaging surrogate in place of the therapeutic radionuclide. As direct non-invasive measurement of alpha-particle emissions cannot be conducted using current medical scanner technology, the imaging surrogate allows for a pharmacologically-inactive determination of the pharmacokinetics and biodistribution of TRT candidate ligands in advance of treatment. Thus, elementally-matched 203Pb labeled radiopharmaceuticals can be used to identify patients who may benefit from 212Pb alpha-TRT and apply appropriate dosimetry and treatment planning in advance of the therapy. In this review, we provide a brief history on the use of these isotopes for cancer therapy; describe the decay and chemical characteristics of 203/212Pb for their use in cancer theranostics and methodologies applied for production and purification of these isotopes for radiopharmaceutical production. In addition, a medical physics and dosimetry perspective is provided that highlights the potential of 212Pb for alpha-TRT and the expected safety for 203Pb surrogate imaging. Recent and current preclinical and clinical studies are presented. The sum of the findings herein and observations presented provide evidence that the 203Pb/212Pb theranostic pair has a promising future for use in radiopharmaceutical theranostic therapies for cancer.
Collapse
Affiliation(s)
- Mengshi Li
- Department of Radiology, The University of Iowa, Iowa City, IA USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
| | | | - Dongyoul Lee
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Stephen Graves
- Department of Radiology, The University of Iowa, Iowa City, IA USA
| | - Roy Copping
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA
| | - Saed Mirzadeh
- Oak Ridge National Laboratory, The US Department of Energy, Oak Ridge TN USA
| | - Brian E. Zimmerman
- The National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa USA
| | - Michael K. Schultz
- Department of Radiology, The University of Iowa, Iowa City, IA USA
- Viewpoint Molecular Targeting, Inc., Coralville, IA USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
- Department of Chemistry, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|