1
|
Bolzán AD. Mutagen-induced telomere instability in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503387. [PMID: 34454696 DOI: 10.1016/j.mrgentox.2021.503387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/27/2022]
Abstract
Telomere instability is one of the main sources of genome instability and may result from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. Telomere instability may occur at the chromosomal or at the molecular level, giving rise, respectively, to telomere-related chromosomal aberrations or the loss or modification of any of the components of the telomere (telomere DNA, telomere-associated proteins, or telomere RNA). Since telomeres play a fundamental role in maintaining genome stability, the study of telomere instability in cells exposed to mutagens is of great importance to understand the telomere-driven genomic instability present in those cells. In the present review, we will focus on the current knowledge about telomere instability induced by physical, chemical, and biological mutagens in human cells.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-CICPBA-UNLP), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Luxton JJ, McKenna MJ, Taylor LE, George KA, Zwart SR, Crucian BE, Drel VR, Garrett-Bakelman FE, Mackay MJ, Butler D, Foox J, Grigorev K, Bezdan D, Meydan C, Smith SM, Sharma K, Mason CE, Bailey SM. Temporal Telomere and DNA Damage Responses in the Space Radiation Environment. Cell Rep 2020; 33:108435. [PMID: 33242411 DOI: 10.1016/j.celrep.2020.108435] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023] Open
Abstract
Telomeres, repetitive terminal features of chromosomes essential for maintaining genome integrity, shorten with cell division, lifestyle factors and stresses, and environmental exposures, and so they provide a robust biomarker of health, aging, and age-related diseases. We assessed telomere length dynamics (changes over time) in three unrelated astronauts before, during, and after 1-year or 6-month missions aboard the International Space Station (ISS). Similar to our results for National Aeronautics and Space Administration's (NASA's) One-Year Mission twin astronaut (Garrett-Bakelman et al., 2019), significantly longer telomeres were observed during spaceflight for two 6-month mission astronauts. Furthermore, telomere length shortened rapidly after return to Earth for all three crewmembers and, overall, telomere length tended to be shorter after spaceflight than before spaceflight. Consistent with chronic exposure to the space radiation environment, signatures of persistent DNA damage responses were also detected, including mitochondrial and oxidative stress, inflammation, and telomeric and chromosomal aberrations, which together provide potential mechanistic insight into spaceflight-specific telomere elongation.
Collapse
Affiliation(s)
- Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Miles J McKenna
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | | | - Viktor R Drel
- Center for Renal Precision Medicine, UT Health, San Antonio, TX, USA
| | - Francine E Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Mackay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Kumar Sharma
- Center for Renal Precision Medicine, UT Health, San Antonio, TX, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
3
|
Using telomeric chromosomal aberrations to evaluate clastogen-induced genomic instability in mammalian cells. Chromosome Res 2020; 28:259-276. [DOI: 10.1007/s10577-020-09641-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
4
|
Amato R, Valenzuela M, Berardinelli F, Salvati E, Maresca C, Leone S, Antoccia A, Sgura A. G-quadruplex Stabilization Fuels the ALT Pathway in ALT-positive Osteosarcoma Cells. Genes (Basel) 2020; 11:genes11030304. [PMID: 32183119 PMCID: PMC7140816 DOI: 10.3390/genes11030304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Most human tumors maintain telomere lengths by telomerase, whereas a portion of them (10–15%) uses a mechanism named alternative lengthening of telomeres (ALT). The telomeric G-quadruplex (G4) ligand RHPS4 is known for its potent antiproliferative effect, as shown in telomerase-positive cancer models. Moreover, RHPS4 is also able to reduce cell proliferation in ALT cells, although the influence of G4 stabilization on the ALT mechanism has so far been poorly investigated. Here we show that sensitivity to RHPS4 is comparable in ALT-positive (U2OS; SAOS-2) and telomerase-positive (HOS) osteosarcoma cell lines, unlinking the telomere maintenance mechanism and RHPS4 responsiveness. To investigate the impact of G4 stabilization on ALT, the cardinal ALT hallmarks were analyzed. A significant induction of telomeric doublets, telomeric clusterized DNA damage, ALT-associated Promyelocytic Leukaemia-bodies (APBs), telomere sister chromatid exchanges (T-SCE) and c-circles was found exclusively in RHPS4-treated ALT cells. We surmise that RHPS4 affects ALT mechanisms through the induction of replicative stress that in turn is converted in DNA damage at telomeres, fueling recombination. In conclusion, our work indicates that RHPS4-induced telomeric DNA damage promotes overactivation of telomeric recombination in ALT cells, opening new questions on the therapeutic employment of G4 ligands in the treatment of ALT positive tumors.
Collapse
Affiliation(s)
- Roberta Amato
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Martina Valenzuela
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Francesco Berardinelli
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
- Correspondence: ; Tel.: +39-0657-33-6330
| | - Erica Salvati
- BPM-CNR Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy;
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Carmen Maresca
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Stefano Leone
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Antonio Antoccia
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Antonella Sgura
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| |
Collapse
|
5
|
Berardinelli F, Tanori M, Muoio D, Buccarelli M, di Masi A, Leone S, Ricci-Vitiani L, Pallini R, Mancuso M, Antoccia A. G-quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated- and stem-cancer cells. J Exp Clin Cancer Res 2019; 38:311. [PMID: 31311580 PMCID: PMC6636127 DOI: 10.1186/s13046-019-1293-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive and most lethal primary brain tumor in the adulthood. Current standard therapies are not curative and novel therapeutic options are urgently required. Present knowledge suggests that the continued glioblastoma growth and recurrence is determined by glioblastoma stem-like cells (GSCs), which display self-renewal, tumorigenic potential, and increased radio- and chemo-resistance. The G-quadruplex ligand RHPS4 displays in vitro radiosensitizing effect in GBM radioresistant cells through the targeting and dysfunctionalization of telomeres but RHPS4 and Ionizing Radiation (IR) combined treatment efficacy in vivo has not been explored so far. METHODS RHPS4 and IR combined effects were tested in vivo in a heterotopic mice xenograft model and in vitro in stem-like cells derived from U251MG and from four GBM patients. Cell growth assays, cytogenetic analysis, immunoblotting, gene expression and cytofluorimetric analysis were performed in order to characterize the response of differentiated and stem-like cells to RHPS4 and IR in single and combined treatments. RESULTS RHPS4 administration and IR exposure is very effective in blocking tumor growth in vivo up to 65 days. The tumor volume reduction and the long-term tumor control suggested the targeting of the stem cell compartment. Interestingly, RHPS4 treatment was able to strongly reduce cell proliferation in GSCs but, unexpectedly, did not synergize with IR. Lack of radiosensitization was supported by the GSCs telomeric-resistance observed as the total absence of telomere-involving chromosomal aberrations. Remarkably, RHPS4 treatment determined a strong reduction of CHK1 and RAD51 proteins and transcript levels suggesting that the inhibition of GSCs growth is determined by the impairment of the replication stress (RS) response and DNA repair. CONCLUSIONS We propose that the potent antiproliferative effect of RHPS4 in GSCs is not determined by telomeric dysfunction but is achieved by the induction of RS and by the concomitant depletion of CHK1 and RAD51, leading to DNA damage and cell death. These data open to novel therapeutic options for the targeting of GSCs, indicating that the combined inhibition of cell-cycle checkpoints and DNA repair proteins provides the most effective means to overcome resistance of GSC to genotoxic insults.
Collapse
Affiliation(s)
| | - M. Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - D. Muoio
- Department of Science, University Roma Tre, Rome, Italy
| | - M. Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A. di Masi
- Department of Science, University Roma Tre, Rome, Italy
| | - S. Leone
- Department of Science, University Roma Tre, Rome, Italy
| | - L. Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - R. Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - M. Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A. Antoccia
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
6
|
X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells. Cells 2019; 8:cells8070708. [PMID: 31336873 PMCID: PMC6678842 DOI: 10.3390/cells8070708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.
Collapse
|
7
|
Coluzzi E, Leone S, Sgura A. Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells 2019; 8:cells8010019. [PMID: 30609792 PMCID: PMC6356380 DOI: 10.3390/cells8010019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative DNA damage, particularly 8-oxoguanine, represents the most frequent DNA damage in human cells, especially at the telomeric level. The presence of oxidative lesions in the DNA can hinder the replication fork and is able to activate the DNA damage response. In this study, we wanted to understand the mechanisms by which oxidative damage causes telomere dysfunction and senescence in human primary fibroblasts. After acute oxidative stress at telomeres, our data demonstrated a reduction in TRF1 and TRF2, which are involved in proper telomere replication and T-loop formation, respectively. Furthermore, we observed a higher level of γH2AX with respect to 53BP1 at telomeres, suggesting a telomeric replication fork stall rather than double-strand breaks. To confirm this finding, we studied the replication of telomeres by Chromosome Orientation-FISH (CO-FISH). The data obtained show an increase in unreplicated telomeres after hydrogen peroxide treatment, corroborating the idea that the presence of 8-oxoG can induce replication fork arrest at telomeres. Lastly, we analyzed the H3K9me3 histone mark after oxidative stress at telomeres, and our results showed an increase of this marker, most likely inducing the heterochromatinization of telomeres. These results suggest that 8-oxoG is fundamental in oxidative stress-induced telomeric damage, principally causing replication fork arrest.
Collapse
Affiliation(s)
- Elisa Coluzzi
- Department of Science, University of Rome "Roma TRE", Viale Guglielmo Marconi, 446, 00146 Rome, Italy.
| | - Stefano Leone
- Department of Science, University of Rome "Roma TRE", Viale Guglielmo Marconi, 446, 00146 Rome, Italy.
| | - Antonella Sgura
- Department of Science, University of Rome "Roma TRE", Viale Guglielmo Marconi, 446, 00146 Rome, Italy.
| |
Collapse
|
8
|
Laudadio I, Orso F, Azzalin G, Calabrò C, Berardinelli F, Coluzzi E, Gioiosa S, Taverna D, Sgura A, Carissimi C, Fulci V. AGO2 promotes telomerase activity and interaction between the telomerase components TERT and TERC. EMBO Rep 2018; 20:embr.201845969. [PMID: 30591524 DOI: 10.15252/embr.201845969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) constitute the core telomerase enzyme that maintains the length of telomeres. Telomere maintenance is affected in a broad range of cancer and degenerative disorders. Taking advantage of gain- and loss-of-function approaches, we show that Argonaute 2 (AGO2) promotes telomerase activity and stimulates the association between TERT and TERC AGO2 depletion results in shorter telomeres as well as in lower proliferation rates in vitro and in vivo We also demonstrate that AGO2 interacts with TERC and with a newly identified sRNA (terc-sRNA), arising from the H/ACA box of TERC Notably, terc-sRNA is sufficient to enhance telomerase activity when overexpressed. Analyses of sRNA-Seq datasets show that terc-sRNA is detected in primary human tissues and increases in tumors as compared to control tissues. Collectively, these data uncover a new layer of complexity in the regulation of telomerase activity by AGO2 and might lay the foundation for new therapeutic targets in tumors and telomere diseases.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Gianluca Azzalin
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Calabrò
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Elisa Coluzzi
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Silvia Gioiosa
- CNR, Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), Bari, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Antonella Sgura
- Department of Science, University of Rome "Roma Tre", Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
9
|
Muoio D, Berardinelli F, Leone S, Coluzzi E, di Masi A, Doria F, Freccero M, Sgura A, Folini M, Antoccia A. Naphthalene diimide-derivatives G-quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell cycle perturbation in U251MG glioma cells. FEBS J 2018; 285:3769-3785. [PMID: 30095224 DOI: 10.1111/febs.14628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
In the present paper, the biological effects of three different naphthalene diimides (NDIs) G-quadruplex (G4) ligands (H-NDI-Tyr, H-NDI-NMe2, and tetra-NDI-NMe2) were comparatively evaluated to those exerted by RHPS4, a well-characterized telomeric G4-ligand, in an in vitro model of glioblastoma. Data indicated that NDIs were very effective in blocking cell proliferation at nanomolar concentrations, although displaying a lower specificity for telomere targeting compared to RHPS4. In addition, differently from RHPS4, NDIs failed to enhance the effect of ionizing radiation, thus suggesting that additional targets other than telomeres could be involved in the strong NDI-mediated anti-proliferative effects. In order to test telomeric off-target action of NDIs, a panel of genes involved in tumor progression, DNA repair, telomere maintenance, and cell-cycle regulation were evaluated at transcriptional and translational level. Specifically, the compounds were able to cause a marked reduction of TERT and BCL2 amounts as well as to favor the accumulation of proteins involved in cell cycle control. A detailed cytofluorimetric analysis of cell cycle progression by means of bromodeoxyuridine (BrdU) incorporation and staining of phospho-histone H3 indicated that NDIs greatly reduce the progression through S-phase and lead to G1 accumulation of BrdU-positive cells. Taken together, these data indicated that, besides effects on telomeres and oncogenes such as Tert and Bcl2, nanomolar concentrations of NDIs determined a sustained block of cell proliferation by slowing down cell cycle progression during S-phase. In conclusion, our data indicate that NDIs G4-ligands are powerful antiproliferative agents, which act through mechanisms that ultimately lead to altered cell-cycle control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marco Folini
- Dipartimento di Ricerca Applicata e Sviluppo Tecnologico, Fondazione IRCCS Istituto Nazionale dei Tumori di MIlano, Milano, Italy
| | | |
Collapse
|
10
|
Xie X, Shippen DE. DDM1 guards against telomere truncation in Arabidopsis. PLANT CELL REPORTS 2018; 37:501-513. [PMID: 29392401 PMCID: PMC5880217 DOI: 10.1007/s00299-017-2245-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/26/2017] [Indexed: 05/20/2023]
Abstract
Prolonged hypomethylation of DNA leads to telomere truncation correlated with increased telomere recombination, transposon mobilization and stem cell death. Epigenetic pathways, including DNA methylation, are crucial for telomere maintenance. Deficient in DNA Methylation 1 (DDM1) encodes a nucleosome remodeling protein, required to maintain DNA methylation in Arabidopsis thaliana. Plants lacking DDM1 can be self-propagated, but in the sixth generation (G6) hypomethylation leads to rampant transposon activation and infertility. Here we examine the role of DDM1 in telomere length homeostasis through a longitudinal study of successive generations of ddm1-2 mutants. We report that bulk telomere length remains within the wild-type range for the first five generations (G1-G5), and then precipitously drops in G6. While telomerase activity becomes more variable in later generation ddm1-2 mutants, there is no correlation between enzyme activity and telomere length. Plants lacking DDM1 also exhibit no dysregulation of several known telomere-associated transcripts, including TERRA. Instead, telomere shortening coincides with increased G-overhangs and extra-chromosomal circles, consistent with deletional recombination. Telomere shortening also correlates with transcriptional activation of retrotransposons, and a hypersensitive DNA damage response in root apical meristems. Since abiotic stresses, including DNA damage, stimulate homologous recombination, we hypothesize that telomere deletion in G6 ddm1-2 mutants is a by-product of elevated genome-wide recombination in response to transposon mobilization. Further, we speculate that telomere truncation may be beneficial in adverse environmental conditions by accelerating the elimination of stem cells with aberrant genomes.
Collapse
Affiliation(s)
- Xiaoyuan Xie
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA.
| |
Collapse
|
11
|
Coluzzi E, Buonsante R, Leone S, Asmar AJ, Miller KL, Cimini D, Sgura A. Transient ALT activation protects human primary cells from chromosome instability induced by low chronic oxidative stress. Sci Rep 2017; 7:43309. [PMID: 28240303 PMCID: PMC5327399 DOI: 10.1038/srep43309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Cells are often subjected to the effect of reactive oxygen species (ROS) as a result of both intracellular metabolism and exposure to exogenous factors. ROS-dependent oxidative stress can induce 8-oxodG within the GGG triplet found in the G-rich human telomeric sequence (TTAGGG), making telomeres highly susceptible to ROS-induced oxidative damage. Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes and their dysfunction is believed to affect a wide range of cellular and/or organismal processes. Acute oxidative stress was shown to affect telomere integrity, but how prolonged low level oxidative stress, which may be more physiologically relevant, affects telomeres is still poorly investigated. Here, we explored this issue by chronically exposing human primary fibroblasts to a low dose of hydrogen peroxide. We observed fluctuating changes in telomere length and fluctuations in the rates of chromosome instability phenotypes, such that when telomeres shortened, chromosome instability increased and when telomeres lengthened, chromosome instability decreased. We found that telomere length fluctuation is associated with transient activation of an alternative lengthening of telomere (ALT) pathway, but found no evidence of cell death, impaired proliferation, or cell cycle arrest, suggesting that ALT activation may prevent oxidative damage from reaching levels that threaten cell survival.
Collapse
Affiliation(s)
- Elisa Coluzzi
- Department of Science, University Roma Tre, V. le G. Marconi, 446, 00146, Rome, Italy
| | - Rossella Buonsante
- Department of Science, University Roma Tre, V. le G. Marconi, 446, 00146, Rome, Italy
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Stefano Leone
- Department of Science, University Roma Tre, V. le G. Marconi, 446, 00146, Rome, Italy
| | - Anthony J. Asmar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kelley L. Miller
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Antonella Sgura
- Department of Science, University Roma Tre, V. le G. Marconi, 446, 00146, Rome, Italy
| |
Collapse
|
12
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
13
|
PML is required for telomere stability in non-neoplastic human cells. Oncogene 2015; 35:1811-21. [PMID: 26119943 PMCID: PMC4830905 DOI: 10.1038/onc.2015.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Telomeres interact with numerous proteins, including components of the shelterin complex, whose alteration, similarly to proliferation-induced telomere shortening, initiates cellular senescence. In tumors, telomere length is maintained by Telomerase activity or by the Alternative Lengthening of Telomeres mechanism, whose hallmark is the telomeric localization of the promyelocytic leukemia (PML) protein. Whether PML contributes to telomeres maintenance in normal cells is unknown. We show that in normal human fibroblasts the PML protein associates with few telomeres, preferentially when they are damaged. Proliferation-induced telomere attrition or their damage due to alteration of the shelterin complex enhances the telomeric localization of PML, which is increased in human T-lymphocytes derived from patients genetically deficient in telomerase. In normal fibroblasts, PML depletion induces telomere damage, nuclear and chromosomal abnormalities, and senescence. Expression of the leukemia protein PML/RARα in hematopoietic progenitors displaces PML from telomeres and induces telomere shortening in the bone marrow of pre-leukemic mice. Our work provides a novel view of the physiologic function of PML, which participates in telomeres surveillance in normal cells. Our data further imply that a diminished PML function may contribute to cell senescence, genomic instability, and tumorigenesis.
Collapse
|
14
|
The role of telomeres in predicting individual radiosensitivity of patients with cancer in the era of personalized radiotherapy. Cancer Treat Rev 2015; 41:354-60. [PMID: 25704912 DOI: 10.1016/j.ctrv.2015.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Radiotherapy plays a key role in cancer treatments, but tumor cell death differs from one tumor to another. The response of patients to radiotherapy varies considerably and adverse side effects are difficult to prevent. The mechanisms involved in the heterogeneity of this response are not well understood. In order to enhance the efficacy and safety of radiotherapy, it is important to identify subpopulations most at risk of developing a late adverse response to radiotherapy. Telomeres are composed of multiple repeats of a unique sequence of nucleotides forming a TTAGGG pattern. They protect chromosomes from end-to-end fusion and maintain genomic stability. Telomeres have been shown to be extremely sensitive to radiotherapy especially because of their atypical DNA damage repair response, which includes partial inhibition of the non-homologous end joining repair pathway. Ionizing Radiation (IR)-induced damage to telomere DNA could lead to chromosome instability and the initiation or progression of tumor processes. Telomeres could thus be a reliable marker of IR exposure and as such become a new parameter for predicting radiosensitivity. Furthermore, short telomeres are more sensitive to radiotherapy, which could partially explain differences in tumor cell death and in inter-individual sensitivity to radiotherapy. Telomere length could be used to identify subpopulations of patients who could benefit from higher or lower doses per fraction. Finally, pharmacological interference with tumor-cell telomere biology to reduce telomere length and/or telomere stability could also enhance the effectiveness and safety of radiotherapy. Telomeres could play a key role in radiotherapy in the era of personalized medicine.
Collapse
|
15
|
Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 2014; 9:e110963. [PMID: 25354277 PMCID: PMC4212976 DOI: 10.1371/journal.pone.0110963] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023] Open
Abstract
One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.
Collapse
|
16
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
17
|
Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, Petrocchi S, Hachem ME, Pisaneschi E, Ciocca L, Russo S, Lepri FR, Sgura A, Angioni A. Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics Chromatin 2014; 7:1. [PMID: 24393457 PMCID: PMC3892072 DOI: 10.1186/1756-8935-7-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. Results The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. Conclusions Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome.
Collapse
Affiliation(s)
- Cecilia Surace
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Andrea Masotti
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Roberti
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Letizia Da Sacco
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Gemma D'Elia
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Pietro Sirleto
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Raffaella Cusmai
- Neurology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Simona Grotta
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefano Petrocchi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - May El Hachem
- Dermatology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Laura Ciocca
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Serena Russo
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Francesca Romana Lepri
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Adriano Angioni
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
18
|
Berardinelli F, Sgura A, Di Masi A, Leone S, Cirrone GAP, Romano F, Tanzarella C, Antoccia A. Radiation-induced telomere length variations in normal and in Nijmegen Breakage Syndrome cells. Int J Radiat Biol 2014; 90:45-52. [PMID: 24168161 DOI: 10.3109/09553002.2014.859400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The meiotic recombination protein 11 (MRE11), radiation sensitive 50 (RAD50) and nibrin (NBN) are members of the MRE11/RAD50/NBN (MRN) complex which plays a fundamental role in the double-strand break damage response, including DNA damage sensing, signalling and repair after exposure to ionizing radiations. In addition the MRN complex is involved in the mechanisms regulating telomere length maintenance. Based on our previous results indicating that, in contrast to X-rays, high linear energy transfer (LET) radiations were able to elongate telomeres, we investigated the behavior of cells mutated in components of the MRN complex after exposure either to 62 MeV carbon-ions (50 keV/μm, at cell surface) or X-rays. MATERIALS AND METHODS Epstein Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCL) established from normal, heterozygous for the NBN gene, homozygous for either mutant/deleted NBN, RAD50 or ataxia telangiectasia mutated (ATM) genes were irradiated with 4 Gy, with telomere length being evaluated 24 h later or in time course-experiments up to 15 days later. The induction of telomeric sister chromatid exchanges (T-SCE) was measured as a hallmark of homologous directed recombinational repair. RESULTS NBN and RAD50 mutated cells failed to elongate telomeres that instead occurred in the remaining cell lines as a response only to high-LET irradiation. Also, a kinetic study with 0.5-4 Gy up to 15 days from irradiation confirmed that NBN gene was indispensable for telomere elongation. Furthermore, such an elongation, was accompanied by an increased frequency of sister chromatid exchanges at telomeres (T-SCE). In contrast, the induction of genomic sister chromatid exchanges (G-SCE) occurred for carbon-ions irrespective of NBN gene status. CONCLUSIONS We speculate that the MRN is necessary to process a subclass of high-LET radiation-induced complex DNA damage through a recombinational-repair mediated mechanism which in turn is responsible for telomere elongation.
Collapse
|
19
|
Nieri D, Fioramonti M, Berardinelli F, Leone S, Cherubini R, De Nadal V, Gerardi S, Moreno S, Nardacci R, Tanzarella C, Antoccia A. Radiation response of chemically derived mitochondrial DNA-deficient AG01522 human primary fibroblasts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:86-94. [DOI: 10.1016/j.mrgentox.2013.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/15/2022]
|
20
|
Nieri D, Berardinelli F, Antoccia A, Tanzarella C, Sgura A. Comparison between two FISH techniques in the in vitro study of cytogenetic markers for low-dose X-ray exposure in human primary fibroblasts. Front Genet 2013; 4:141. [PMID: 23908663 PMCID: PMC3725399 DOI: 10.3389/fgene.2013.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 07/10/2013] [Indexed: 01/01/2023] Open
Abstract
This work is about the setup of an in vitro system to report low-dose of X-rays as measured as cytogenetic damage. Q- and multicolor FISH (m-FISH), for telomere length and chromosome instability analysis, respectively, were compared to evaluate their sensitivity in the low-dose range in human primary fibroblasts. No telomere length modulation was observed up to 1 Gy in cycling fibroblasts, though reported for high doses, by that frustrating the purpose of using it as a low-exposure marker. To date the m-FISH is the best setup for the assessment of the chromosome structural damage: it allows stable and instable aberrations to be detected all over the karyotype. Stable ones such as balanced translocations, are not eliminated due to cell-cycle as unstable ones, so they are considered transmissible markers for retrospective dosimetry. The induction of chromosome damage showed a clear dependence on dose delivered; unstable aberrations were demonstrated after doses of 0.1 Gy, and stable aberrations after doses higher than 0.5 Gy. Summarizing, q-FISH is unfit to report low exposures while m-FISH provides better results: unstable aberrations are sensible short-term reporters, while stable ones long report exposures but with a higher induction threshold.
Collapse
Affiliation(s)
- D Nieri
- Department of Sciences, Roma Tre University Roma, Italy
| | | | | | | | | |
Collapse
|
21
|
Nieri D, Berardinelli F, Sgura A, Cherubini R, De Nadal V, Gerardi S, Tanzarella C, Antoccia A. Cyogenetics effects in AG01522 human primary fibroblasts exposed to low doses of radiations with different quality. Int J Radiat Biol 2013; 89:698-707. [DOI: 10.3109/09553002.2013.797126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Berardinelli F, Antoccia A, Buonsante R, Gerardi S, Cherubini R, De Nadal V, Tanzarella C, Sgura A. The role of telomere length modulation in delayed chromosome instability induced by ionizing radiation in human primary fibroblasts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:172-179. [PMID: 23401031 DOI: 10.1002/em.21761] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Telomere integrity is important for chromosome stability. The main objective of our study was to investigate the relationship between telomere length modulation and mitotic chromosome segregation induced by ionizing radiation in human primary fibroblasts. We used X-rays and low-energy protons because of their ability to induce different telomeric responses. Samples irradiated with 4 Gy were fixed at different times up to 6 days from exposure and telomere length, anaphase abnormalities, and chromosome aberrations were analyzed. We observed that X-rays induced telomere shortening in cells harvested at 96 hrs, whereas protons induced a significant increase in telomere length at short as well as at long harvesting times (24 and 96 hrs). Consistent with this, the analysis of anaphase bridges at 96 hrs showed a fourfold increase in X-ray- compared with proton-irradiated samples, suggesting a correlation between telomere length/dysfunction and chromosome missegregation. In line with these findings, the frequency of dicentrics and rings decreased with time for protons whereas it remained stable after X-rays irradiation. Telomeric FISH staining on anaphases revealed a higher percentage of bridges with telomere signals in X-ray-treated samples than that observed after proton irradiation, thus suggesting that the aberrations observed after X-ray irradiation originated from telomere attrition and consequent chromosome end-to-end fusion. This study shows that, beside an expected "early" chromosome instability induced shortly after irradiation, a delayed one occurs as a result of alterations in telomere metabolism and that this mechanism may play an important role in genomic stability.
Collapse
Affiliation(s)
- Francesco Berardinelli
- Dipartimento Di Scienze, Università "Roma Tre", Rome, Italy; INFN-"Roma Tre", Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Berardinelli F, Nieri D, Sgura A, Tanzarella C, Antoccia A. Telomere loss, not average telomere length, confers radiosensitivity to TK6-irradiated cells. Mutat Res 2012; 740:13-20. [PMID: 23220250 DOI: 10.1016/j.mrfmmm.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
Many and varied are the proposed mechanisms that lead to resistance to ionizing radiation treatment. Among them, an inverse relationship between telomere length and radioresistance has been recently advanced. Investigating such a relationship in TK6 lymphoblasts, we found that clones originating from cells survived to 4Gy of X-rays showed a significantly higher telomere length when compared with clones grown from untreated cells. The lengthening observed was not attributable to a radiation-induced increase in telomerase activity, as demonstrated by TRAP assay performed in the dose range of 1-10Gy. Given the evidence that TK6 whole population was characterized by heterogeneity in cellular mean telomere length and telomere loss, we tested the hypothesis that a process of selection may favour cells with longer telomeres (more radioresistant cells) following exposure to irradiation. In order to do this 15 independent TK6 clones were selected and characterized for telomere length and loss on the basis of q-FISH and flow-FISH analysis. Among the screened clones four characterized by long telomeres and four characterized by short telomeres were tested for their radiosensitivity by means of clonogenic assay. The results obtained showed that, in our experimental conditions (cellular model, radiation doses) no significant correlation was observed between radiosensitivity and mean telomere lengths, whereas a positive correlation was observed with respect to telomere loss. Overall, these results indicate that telomere loss and not mean telomere length plays a critical role in the phenomenon of radiosensitivity/radioresistance.
Collapse
|
24
|
Abstract
Osteosarcoma is a primary bone malignancy with a particularly high incidence rate in children and adolescents relative to other age groups. The etiology of this often aggressive cancer is currently unknown, because complicated structural and numeric genomic rearrangements in cancer cells preclude understanding of tumour development. In addition, few consistent genetic changes that may indicate effective molecular therapeutic targets have been reported. However, high-resolution techniques continue to improve knowledge of distinct areas of the genome that are more commonly associated with osteosarcomas. Copy number gains at chromosomes 1p, 1q, 6p, 8q, and 17p as well as copy number losses at chromosomes 3q, 6q, 9, 10, 13, 17p, and 18q have been detected by numerous groups, but definitive oncogenes or tumour suppressor genes remain elusive with respect to many loci. In this paper, we examine studies of the genetics of osteosarcoma to comprehensively describe the heterogeneity and complexity of this cancer.
Collapse
|
25
|
Bolzán AD. Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 2011; 27:1-15. [PMID: 21857006 DOI: 10.1093/mutage/ger052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Telomeres are specialised nucleoproteic complexes localised at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. In vertebrate chromosomes, the DNA component of telomeres is constituted by (TTAGGG)n repeats, which can be localised at the terminal regions of chromosomes (true telomeres) or at intrachromosomal sites (interstitial telomeric sequences or ITSs, located at the centromeric region or between the centromere and the telomere). In the past two decades, the use of molecular cytogenetic techniques has led to a new spectrum of spontaneous and clastogen-induced chromosomal aberrations being identified, involving telomeres and ITSs. Some aberrations involve the chromosome ends and, indirectly, the telomeric repeats located at the terminal regions of chromosomes (true telomeres). A second type of aberrations directly involves the telomeric sequences located at the chromosome ends. Finally, there is a third class of aberrations that specifically involves the ITSs. The aims of this review are to provide a detailed description of these aberrations and to summarise the available data regarding their induction by physical and chemical mutagens.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- La Carrera del Investigador Científico y Tecnológico del CONICET, Argentina, Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (CCT-CONICET La Plata-CICPBA), C.C. 403, 1900 La Plata, Argentina.
| |
Collapse
|