1
|
Hart A, Dudzic JP, Clarke JW, Eby J, Perlman SJ, Bazalova-Carter M. High-throughput, low-cost FLASH: irradiation of Drosophila melanogaster with low-energy X-rays using time structures spanning conventional and ultrahigh dose rates. JOURNAL OF RADIATION RESEARCH 2024:rrae079. [PMID: 39422537 DOI: 10.1093/jrr/rrae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/16/2024] [Indexed: 10/19/2024]
Abstract
FLASH radiotherapy is an emerging technique in radiation oncology that may improve clinical outcomes by reducing normal tissue toxicities. The physical radiation characteristics needed to induce the radiobiological benefits of FLASH are still an active area of investigation. To determine the dose rate, range of doses and delivery time structure necessary to trigger the FLASH effect, Drosophila melanogaster were exposed to ultrahigh dose rate (UHDR) or conventional radiotherapy dose rate (CONV) 120-kVp X-rays. A conventional X-ray tube outfitted with a shutter system was used to deliver 17- to 44-Gy doses to third-instar D. melanogaster larvae at both UHDR (210 Gy/s) and CONV (0.2-0.4 Gy/s) dose rates. The larvae were then tracked through development to adulthood and scored for eclosion and lifespan. Larvae exposed to UHDR eclosed at higher rates and had longer median survival as adults compared to those treated with CONV at the same doses. Eclosion rates at 24 Gy were 68% higher for the UHDR group (P < 0.05). Median survival from 22 Gy was >22 days for UHDR and 17 days for CONV (P < 0.01). Two normal tissue-sparing effects were observed for D. melanogaster irradiated with UHDR 120-kVp X-rays. The effects appeared only at intermediate doses and may be useful in establishing the dose range over which the benefits of FLASH can be obtained. This work also demonstrates the usefulness of a high-throughput fruit fly model and a low-cost X-ray tube system for radiobiological FLASH research.
Collapse
Affiliation(s)
- Alexander Hart
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jan P Dudzic
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jameson W Clarke
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jonathan Eby
- Institute of Biomedical Engineering, University of Toronto, 164 College St. Toronto, Ontario M5S 3E2, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
2
|
Yushkova E, Bashlykova L. Transgenerational effects in offspring of chronically irradiated populations of Drosophila melanogaster after the Chernobyl accident. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:39-51. [PMID: 33233025 DOI: 10.1002/em.22416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
The zone of the Chernobyl nuclear disaster represents the largest area of chronic low-intensity radioactive impact on the natural ecosystems. The effects of chronic low-dose irradiation for natural populations of organisms and their offspring are unknown. The natural populations of Drosophila melanogaster sampled in 2007 in Chernobyl sites with different levels of radiation contamination were investigated. The offspring of specimens from these populations were studied under laboratory conditions to assess the effects of parental irradiation on the mutation process and survival of the offspring. Transgenerational effects of radioactive contamination were observed at the level of gross chromosomal rearrangements (dominant lethal mutations). The frequency of point/gene mutations (recessive sex-linked lethal mutations) of the offspring of the irradiated parents corresponded to the actual level of spontaneous mutations. The survival rate of offspring decreased over 160 generations and significantly correlated with the dominant lethal mutation levels. Our results provide a compelling evidence that other factors (distance from the Chernobyl Nuclear Power Plant, time after the initial exposure, selection site and origin of population) can affect the changes in the levels of the studied parameters along with the parental radiation exposure. They can also make a significant contribution to the health of the offspring of animals exposed to radioactive contamination. These data should be useful for future radioecological studies which will clarify the true mechanisms of transgenerational inheritance and generation of mutations to the offspring of chronically irradiated animals and their reactions to the interaction of various environmental factors.
Collapse
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia
| | - Ludmila Bashlykova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia
| |
Collapse
|
3
|
Tanaka Y, Furuta M. Biological effects of low-dose γ-ray irradiation on chromosomes and DNA of Drosophila melanogaster. JOURNAL OF RADIATION RESEARCH 2021; 62:1-11. [PMID: 33290547 PMCID: PMC7779362 DOI: 10.1093/jrr/rraa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/27/2020] [Indexed: 06/12/2023]
Abstract
While the damage to chromosomes and genes induced by high-dose radiation (HDR) has been well researched in many organisms, the effects of low-dose radiation (LDR), defined as a radiation dose of ≤100 mSv, are still being debated. Recent research has suggested that the biological effects of LDR differ from those observed in HDR. To detect the effect of LDR on genes, we selected a gene of Drosophila melanogaster, known as the multiple wing hair (mwh) gene. The hatched heterozygous larvae with genotype mwh/+ were irradiated by γ-rays of a 60Co source. After eclosion, the wing hairs of the heterozygous flies were observed. The area of only one or two mwh cells (small spot) and that of more than three mwh cells (large spot) were counted. The ratio of the two kinds of spots were compared between groups irradiated by different doses including a non-irradiated control group. For the small spot in females, the eruption frequency increased in the groups irradiated with 20-75 mGy, indicating hypersensitivity (HRS) to LDR, while in the groups irradiated with 200 and 300 mGy, the frequency decreased, indicating induced radioresistance (IRR), while in males, 50 and 100 mGy conferred HRS and 75 and 200 mGy conferred IRR. For the large spot in females, 75 mGy conferred HRS and 100-800 mGy conferred IRR. In conclusion, HRS and IRR to LDR was found in Drosophila wing cells by delimiting the dose of γ-rays finely, except in the male large spot.
Collapse
Affiliation(s)
- Yoshiharu Tanaka
- Corresponding author. Radiation Biology and Molecular Genetics, Division of Quantum Radiation, Faculty of Technology and Biology and Cultural Sciences, Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Tel: 81-72-254-9750;
| | - Masakazu Furuta
- Radiation Biology and Molecular Genetics, Division of Quantum Radiation, Faculty of Technology and Department of Radiation Research Center, Osaka Prefecture University, 1-2 Gakuencho, Naka-ku, Sakai 591-8531, Japan
| |
Collapse
|
4
|
Nakajima K, Gao T, Kume K, Iwata H, Hirai S, Omachi C, Tomita J, Ogino H, Naito M, Shibamoto Y. Fruit Fly, Drosophila melanogaster, as an In Vivo Tool to Study the Biological Effects of Proton Irradiation. Radiat Res 2020; 194:143-152. [PMID: 32845992 DOI: 10.1667/rade-20-00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 11/03/2022]
Abstract
The clinical superiority of proton therapy over photon therapy has recently gained recognition; however, the biological effects of proton therapy remain poorly understood. The lack of in vivo evidence is especially important. Therefore, the goal of this study was to validate the usefulness of Drosophila melanogaster as an alternative tool in proton radiobiology. To determine whether the comparative biological effects of protons and X rays are detectable in Drosophila, we assessed their influence on survival and mRNA expression. Postirradiation observation revealed that protons inhibited their development and reduced the overall survival rates more effectively than X rays. The relative biological effectiveness of the proton beams compared to the X rays estimated from the 50% lethal doses was 1.31. At 2 or 24 h postirradiation, mRNA expression analysis demonstrated that the expression patterns of several genes (such as DNA-repair-, apoptosis- and angiogenesis-related genes) followed different time courses depending on radiation type. Moreover, our trials suggested that the knockdown of individual genes by the GAL4/UAS system changes the radiosensitivity in a radiation type-specific manner. We confirmed this Drosophila model to be considerably useful to evaluate the findings from in vitro studies in an in vivo system. Furthermore, this model has a potential to elucidate more complex biological mechanisms underlying proton irradiation.
Collapse
Affiliation(s)
- Koichiro Nakajima
- Departments of Radiation Oncology.,Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - TianXiang Gao
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiromitsu Iwata
- Departments of Radiation Oncology.,Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuichi Hirai
- Department of Anatomy, Aichi Medical University, Nagakute, Japan
| | - Chihiro Omachi
- Departments of Radiation Oncology and Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Ogino
- Departments of Radiation Oncology.,Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Nagakute, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|
6
|
Cardarelli JJ, Ulsh BA. It Is Time to Move Beyond the Linear No-Threshold Theory for Low-Dose Radiation Protection. Dose Response 2018; 16:1559325818779651. [PMID: 30013457 PMCID: PMC6043938 DOI: 10.1177/1559325818779651] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 02/03/2023] Open
Abstract
The US Environmental Protection Agency (USEPA) is the primary federal agency responsible for promulgating regulations and policies to protect people and the environment from ionizing radiation. Currently, the USEPA uses the linear no-threshold (LNT) model to estimate cancer risks and determine cleanup levels in radiologically contaminated environments. The LNT model implies that there is no safe dose of ionizing radiation; however, adverse effects from low dose, low-dose rate (LDDR) exposures are not detectable. This article (1) provides the scientific basis for discontinuing use of the LNT model in LDDR radiation environments, (2) shows that there is no scientific consensus for using the LNT model, (3) identifies USEPA reliance on outdated scientific information, and (4) identifies regulatory reliance on incomplete evaluations of recent data contradicting the LNT. It is the time to reconsider the use of the LNT model in LDDR radiation environments. Incorporating the latest science into the regulatory process for risk assessment will (1) ensure science remains the foundation for decision making, (2) reduce unnecessary burdens of costly cleanups, (3) educate the public on the real effects of LDDR radiation exposures, and (4) harmonize government policies with the rest of the radiation scientific community.
Collapse
|
7
|
Itoh M, Kajihara R, Kato Y, Takano-Shimizu T, Inoue Y. Frequencies of chromosomal inversions in Drosophila melanogaster in Fukushima after the nuclear power plant accident. PLoS One 2018; 13:e0192096. [PMID: 29420572 PMCID: PMC5805227 DOI: 10.1371/journal.pone.0192096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
In order to investigate genetic impact of a large amount of radionuclides released by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011, we surveyed 2,304 haploid genomes of Drosophila melanogaster collected in three localities in Fukushima in 2012 and 2013 for chromosomal inversions. No unique inversion was found in 298 genomes in 2012 and only two in 2,006 genomes in 2013. The observed frequencies were even lower than the long-term average frequency of unique inversions in Japan. The common cosmopolitan inversions were also examined in Fukushima, Kyoto, and Iriomote (Okinawa) in 2012. Among three samples in Fukushima, the flies in Iizaka, where environmental radiation level was the highest, showed the lowest frequency of In(2L)t, but the highest frequency of In(3R)P, contrary to the expectation of decreasing of their frequencies in higher polluted areas. These results suggest that, at this level of genetic analysis, Fukushima populations of D. melanogaster would not have been negatively impacted following the release of radionuclides. Transposable P-element mobility was not likely to induce DNA damage solely or synergistically with radioactivity, because their transposition activity was totally repressed in the Fukushima strains. However, it should be noted that, because of limitations in access to the exclusion zone, we could only sample the populations in areas of relatively low radioactive contamination (0.39-0.63 μSv/h). Therefore, the present study is likely to be underpowered to detect any effects that might be expected in heavily contaminated areas.
Collapse
Affiliation(s)
- Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Ryutaro Kajihara
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasuko Kato
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
- Institute of Promotion of University Strategy, Global Excellence, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Yutaka Inoue
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Japan
| |
Collapse
|
8
|
Song KH, Jung SY, Kho SH, Hwang SG, Ha H, Nam SY, Song JY. Effects of low-dose irradiation on mice with Escherichia coli-induced sepsis. Toxicol Appl Pharmacol 2017; 333:17-25. [PMID: 28818514 DOI: 10.1016/j.taap.2017.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
Although favorable immune responses to low-dose irradiation (LDI) have been observed in normal mice, i.e., a hormesis effect, little is known about the effects of LDI in infectious diseases. In this study, we examined the effects of LDI on mice with sepsis, a severe and often lethal hyperinflammatory response to bacteria. Female C57BL/6 mice were whole-body irradiated with 10cGy 48h before Escherichia coli infection, and survival, bacterial clearance, cytokines, and antioxidants were quantified. LDI pretreatment significantly increased survival from 46.7% in control mice to 75% in mice with sepsis. The bacterial burden was significantly lower in the blood, spleen, and kidney of LDI-treated mice than in those of control septic mice. The levels of pro-inflammatory cytokines, e.g., IL-1β and IL-6, as well as anti-inflammatory IL-10 were markedly reduced in pre-LDI septic mice. Nitric oxide production by peritoneal macrophages was also reduced in pre-LDI septic mice. Immune cells in the spleen increased and Nrf2 and HO-1 were induced in pre-LDI septic mice. LDI stimulates the immune response and minimizes lethality in septic mice via enhanced bacterial clearance and reduced initial proinflammatory responses.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Youn Jung
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Seong-Ho Kho
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd., Seoul 01450, Republic of Korea
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea.
| |
Collapse
|
9
|
Beyea J. Response to "Urgent Change Needed to Radiation Protection Policy". HEALTH PHYSICS 2016; 111:308-310. [PMID: 27472756 DOI: 10.1097/hp.0000000000000540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Jan Beyea
- Consulting in the Public Interest, 53 Clinton Street, Lambertville, NJ 08530,
| |
Collapse
|
10
|
Response to “The Birth of the Illegitimate Linear No-threshold Model: An Invalid Paradigm for Estimating Risk Following Low-dose Radiation Exposure”. Am J Clin Oncol 2016; 39:425-6. [DOI: 10.1097/coc.0000000000000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Beyea J. Response to, "On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith.". ENVIRONMENTAL RESEARCH 2016; 148:527-534. [PMID: 26948286 DOI: 10.1016/j.envres.2016.01.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
It is not true that successive groups of researchers from academia and research institutions-scientists who served on panels of the US National Academy of Sciences (NAS)-were duped into supporting a linear no-threshold model (LNT) by the opinions expressed in the genetic panel section of the 1956 "BEAR I" report. Successor reports had their own views of the LNT model, relying on mouse and human data, not fruit fly data. Nor was the 1956 report biased and corrupted, as has been charged in an article by Edward J. Calabrese in this journal. With or without BEAR I, the LNT model would likely have been accepted in the US for radiation protection purposes in the 1950's.
Collapse
Affiliation(s)
- Jan Beyea
- Consulting in the Public Interest, 53 Clinton Street, Lambertville, NJ 08530, USA.
| |
Collapse
|
12
|
Calabrese EJ, Shamoun DY, Hanekamp JC. The Integration of LNT and Hormesis for Cancer Risk Assessment Optimizes Public Health Protection. HEALTH PHYSICS 2016; 110:256-259. [PMID: 26808876 DOI: 10.1097/hp.0000000000000382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes a new cancer risk assessment strategy and methodology that optimizes population-based responses by yielding the lowest disease/tumor incidence across the entire dose continuum. The authors argue that the optimization can be achieved by integrating two seemingly conflicting models; i.e., the linear no-threshold (LNT) and hormetic dose-response models. The integration would yield the optimized response at a risk of 10 with the LNT model. The integrative functionality of the LNT and hormetic dose response models provides an improved estimation of tumor incidence through model uncertainty analysis and major reductions in cancer incidence via hormetic model estimates. This novel approach to cancer risk assessment offers significant improvements over current risk assessment approaches by revealing a regulatory sweet spot that maximizes public health benefits while incorporating practical approaches for model validation.
Collapse
Affiliation(s)
- Edward J Calabrese
- *School of Public Health & Health Sciences, Department of Environmental Health Sciences, Morrill I N344, University of Massachusetts, Amherst, MA 01003; †Research Fellow, Mercatus Center, George Mason University, 3434 Washington Blvd, Arlington, VA 22201; ‡University College Roosevelt, Lange Noordstraat 1, NL-4331 CB Middelburg, The Netherlands
| | | | | |
Collapse
|
13
|
Tomita M, Maeda M. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses. JOURNAL OF RADIATION RESEARCH 2015; 56:205-19. [PMID: 25361549 PMCID: PMC4380047 DOI: 10.1093/jrr/rru099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/19/2014] [Accepted: 09/29/2014] [Indexed: 06/01/2023]
Abstract
Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | - Munetoshi Maeda
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| |
Collapse
|
14
|
Antosh M, Fox D, Hasselbacher T, Lanou R, Neretti N, Cooper LN. Drosophila melanogaster show a threshold effect in response to radiation. Dose Response 2014; 12:551-81. [PMID: 25552957 PMCID: PMC4267449 DOI: 10.2203/dose-response.13-047.antosh] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We investigate the biological effects of radiation using adult Drosophila melanogaster as a model organism, focusing on gene expression and lifespan analysis to determine the effect of different radiation doses. Our results support a threshold effect in response to radiation: no effect on lifespan and no permanent effect on gene expression is seen at incident radiation levels below 100 J/kg. We also find that it is more appropriate to compare radiation effects in flies using the absorbed energy rather than incident radiation levels.
Collapse
Affiliation(s)
- Michael Antosh
- Institute for Brain and Neural Systems, Brown University
| | - David Fox
- Institute for Brain and Neural Systems, Brown University
| | | | | | - Nicola Neretti
- Institute for Brain and Neural Systems, Brown University
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Leon N. Cooper
- Institute for Brain and Neural Systems, Brown University
- Department of Physics, Brown University
| |
Collapse
|
15
|
Galván I, Bonisoli-Alquati A, Jenkinson S, Ghanem G, Wakamatsu K, Mousseau TA, Møller AP. Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12283] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ismael Galván
- Laboratoire d'Ecologie, Systématique et Evolution; CNRS UMR 8079; Université Paris-Sud 11; Bâtiment 362 91405 Orsay Cedex France
| | | | - Shanna Jenkinson
- Department of Biological Sciences; University of South Carolina; Columbia SC 29208 USA
| | - Ghanem Ghanem
- Laboratoire d'Oncologie et de Chirurgie Expérimentale (L.O.C.E.); Institut Jules Bordet; Université Libre de Bruxelles; rue Héger-Bordet 1 1000 Bruxelles Belgium
| | - Kazumasa Wakamatsu
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Aichi 470-1192 Japan
| | - Timothy A. Mousseau
- Department of Biological Sciences; University of South Carolina; Columbia SC 29208 USA
| | - Anders P. Møller
- Laboratoire d'Ecologie, Systématique et Evolution; CNRS UMR 8079; Université Paris-Sud 11; Bâtiment 362 91405 Orsay Cedex France
| |
Collapse
|
16
|
Tomita M, Maeda M, Kobayashi K, Matsumoto H. Dose response of soft X-ray-induced bystander cell killing affected by p53 status. Radiat Res 2013; 179:200-7. [PMID: 23289390 DOI: 10.1667/rr3010.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A radiation-induced bystander response, which is generally defined as a cellular response that is induced in nonirradiated cells that received bystander signals from directly irradiated cells within an irradiated cell population. In our earlier X-ray microbeam studies, bystander cell killing in normal human fibroblasts had a parabolic relationship to the irradiation dose. To elucidate the role of p53 in the bystander cell killing, the effects were assessed using human non-small cell lung cancer cells expressing wild-type or temperature-sensitive mutated p53. The surviving fraction of bystander wild-type p53 cells showed a parabolic relationship to the irradiation dose; survival was steeply reduced up to 0.45 Gy, recovered toward to 2 Gy, and remained at control levels up to 5 Gy. In contrast, in the mutated p53 cells at a nonpermissive temperature, the surviving fraction was steeply reduced up to 1 Gy and remained at the reduced level up to 5 Gy. When the mutated p53 cells were incubated at a permissive temperature, the decrease in the surviving fraction at 2 Gy was suppressed. The wild-type p53 cells were not only restrained in releasing bystander signals at 2 Gy, but were also resistant to the signals released by the mutated p53 cells. These results suggest that the X-ray-induced bystander cell killing depends on both the irradiation dose and the p53 status of the targeted cells and the bystander cells.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan.
| | | | | | | |
Collapse
|