1
|
Saini D, Jain V, Das B. Evaluation of natural chronic low dose radiation exposure on telomere length and transcriptional response of shelterin complex in individuals residing in Kerala coast, India. Mutat Res 2022; 825:111797. [PMID: 36116241 DOI: 10.1016/j.mrfmmm.2022.111797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The high level natural radiation areas (HLNRA) of Kerala coast provide unique opportunity to study the biological effect of chronic low dose ionizing radiation (LDIR) on human population below 100 mSv. The radiation level in this area varies from < 1.0-45 mGy /year due to patchy distribution of monazite in the sand, which contains 232Th (8-10%), 238U (0.3%), and their decay products. Telomere length attrition has been correlated to DNA damage due to genotoxic agents. The objective of the present study is to evaluate the effect of natural chronic LDIR exposure on telomere length and transcriptional response of telomere specific and DNA damage repair genes in peripheral blood mononuclear cells (PBMCs) of individuals from normal level natural radiation areas (NLNRA) and HLNRA of Kerala coast, southwest India. Blood samples were collected from 71 random male donors (24-80 years) from NLNRA (≤1.50 mGy/year; N = 19) and two HLNRA dose groups [1.51-10 mGy/year (N = 17); > 10 mGy/year, (N = 35)]. Genomic DNA was isolated from PBMCs and relative telomere length (RTL) was determined using real time q-PCR. Radio-adaptive response (RAR) study was carried out in PBMCs of 40 random males from NLNRA (N = 20) and HLNRA (>10 mGy/year; N = 20), where PBMCs were given a challenged dose of 2.0 Gy gamma radiation at 4 h. Transcriptional profile of telomere specific (TRF1, TRF2, POT1, TIN2, TPP1, RAP1), DNA damage response (RAD17, ATM, CHEK1) and base excision repair pathway (BER) (OGG1, XRCC1, NTH1, NEIL1, MUTYH, MBD4) genes were analysed at basal level and after a challenge dose of 2.0 Gy at 4 h. Our results did not show any significant effect of chronic LDR on RTL among the individuals from NLNRA and two HLNRA groups (p = 0.195). However, influence of age on RTL was clearly evident among NLNRA and HLNRA individuals. At basal level, TRF1, TRF2, TIN2, MBD4, NEIL1 and RAD17 showed significant up-regulation, whereas XRCC1 was significantly down regulated in HLNRA individuals. After a challenge dose of 2.0 Gy, significant transcriptional up-regulation was observed at telomere specific (TRF2, POT1) and BER (MBD4, NEIL1) genes in HLNRA individuals as compared to NLNRA suggesting their role in RAR. In conclusion, elevated level of natural chronic LDR exposure did not have any adverse effect on telomere length in Kerala coast. Significant transcriptional response at TRF2, MBD4 and NEIL1 at basal level and with a challenge dose of 2.0 Gy suggested their active involvement in efficient repair and telomere maintenance in individuals from HLNRA of Kerala coast.
Collapse
Affiliation(s)
- Divyalakshmi Saini
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India
| | - Vinay Jain
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India.
| |
Collapse
|
2
|
Ghosh A. Biological and cellular responses of humans to high-level natural radiation: A clarion call for a fresh perspective on the linear no-threshold paradigm. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503478. [PMID: 35649671 DOI: 10.1016/j.mrgentox.2022.503478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
There remains considerable uncertainty in obtaining risk estimates of adverse health outcomes of chronic low-dose radiation. In the absence of reliable direct data, extrapolation through the linear no-threshold (LNT) hypothesis forms the cardinal tenet of all risk assessments for low doses (≤ 100 mGy) and for the radiation protection principle of As Low As Reasonably Achievable (ALARA). However, as recent evidences demonstrate, LNT assumptions do not appropriately reflect the biology of the cell at the low-dose end of the dose-response curve. In this regard, human populations living in high-level natural radiation areas (HLNRA) of the world can provide valuable insights into the biological and cellular effects of chronic radiation to facilitate improved precision of the dose-response relationship at low doses. Here, data obtained over decades of epidemiological and radiobiological studies on HLNRA populations is summarized. These studies do not show any evidence of unfavourable health effects or adverse cellular effects that can be correlated with high-level natural radiation. Contrary to the assumptions of LNT, no excess cancer risks or untoward pregnancy outcomes have been found to be associated with cumulative radiation dose or in-utero exposures. Molecular biology-driven studies demonstrate that chronic low-dose activates several cellular defence mechanisms that help cells to sense, recover, survive, and adapt to radiation stress. These mechanisms include stress-response signaling, DNA repair, immune alterations and most importantly, the radiation-induced adaptive response. The HLNRA data is consistent with the new evolving paradigms of low-dose radiobiology and can help develop the theoretical framework of an alternate dose-response model. A rational integration of radiobiology with epidemiology data is imperative to reduce uncertainties in predicting the potential health risks of chronic low doses of radiation.
Collapse
Affiliation(s)
- Anu Ghosh
- Animal House Facility & Radiation Signaling Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
3
|
Chronic exposure of humans to high level natural background radiation leads to robust expression of protective stress response proteins. Sci Rep 2021; 11:1777. [PMID: 33469066 PMCID: PMC7815775 DOI: 10.1038/s41598-020-80405-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding exposures to low doses of ionizing radiation are relevant since most environmental, diagnostic radiology and occupational exposures lie in this region. However, the molecular mechanisms that drive cellular responses at these doses, and the subsequent health outcomes, remain unclear. A local monazite-rich high level natural radiation area (HLNRA) in the state of Kerala on the south-west coast of Indian subcontinent show radiation doses extending from ≤ 1 to ≥ 45 mGy/y and thus, serve as a model resource to understand low dose mechanisms directly on healthy humans. We performed quantitative discovery proteomics based on multiplexed isobaric tags (iTRAQ) coupled with LC–MS/MS on human peripheral blood mononuclear cells from HLNRA individuals. Several proteins involved in diverse biological processes such as DNA repair, RNA processing, chromatin modifications and cytoskeletal organization showed distinct expression in HLNRA individuals, suggestive of both recovery and adaptation to low dose radiation. In protein–protein interaction (PPI) networks, YWHAZ (14-3-3ζ) emerged as the top-most hub protein that may direct phosphorylation driven pro-survival cellular processes against radiation stress. PPI networks also identified an integral role for the cytoskeletal protein ACTB, signaling protein PRKACA; and the molecular chaperone HSPA8. The data will allow better integration of radiation biology and epidemiology for risk assessment [Data are available via ProteomeXchange with identifier PXD022380].
Collapse
|
4
|
Nishad S, Ghosh A. Comparative proteomic analysis of human peripheral blood mononuclear cells indicates adaptive response to low-dose radiation in individuals from high background radiation areas of Kerala. Mutagenesis 2018; 33:359-370. [DOI: 10.1093/mutage/gey036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Srambikkal Nishad
- Radiation Signaling Group, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Anu Ghosh
- Radiation Signaling Group, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
5
|
C V K, E N R, V AK, P R VK, P K M K, G J, Das B. Frequency of chromosome aberrations among adult male individuals from high and normal level natural radiation areas of Kerala in the southwest coast of India. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:23-29. [PMID: 29555061 DOI: 10.1016/j.mrgentox.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
Abstract
Chromosome aberration analysis was carried out in peripheral blood lymphocytes of adult male individuals from normal level natural radiation areas (NLNRA, ≤1.5 mGy/year, N = 27) and high level natural radiation areas (HLNRA, >1.5mGy/year, N = 70) of Kerala coast in southwest India. The mean age of individuals from NLNRA and HLNRA was 40.9 ± 9.4 and 43.7 ± 12.4 years, respectively, with an overall mean of 42.9 ± 11.6 (range: 18-80). Whole-blood cultures were set up and about 260 metaphases were scored per individual. The frequency of chromosome aberrations was calculated per 1000 cells. The overall basal frequency of unstable (dicentrics and rings), stable (translocations and inversions) and other (fragments and breaks) aberrations was 1.54 ± 0.25, 4.1 ± 0.40 and 6.66 ± 0.51, respectively. Individuals of NLNRA and HLNRA had statistically similar frequency of unstable (2.11 ± 0.64 v/s 1.39 ± 0.26; RR = 0.66; 95% CI: 0.33-1.33), stable (4.60 ± 0.94 v/s 3.97 ± 0.44; RR = 0.86; 95% CI: 0.55-1.36) and other (7.85 ± 1.23 v/s 6.36 ± 0.56; RR = 0.81; 95% CI: 0.57-1.15) chromosome aberrations. Frequencies of unstable, stable and other chromosome aberrations did not show any dose response after stratification of HLNRA samples into three dose groups (1.51-5.0 mGy/year, 5.01-10 mGy/year and >10.0 mGy/year). Smokers showed an increase in other chromosome aberrations (P < 0.001), but smoking was not associated with unstable and stable aberrations. Alcohol consumption and tobacco chewing had no significant association with any type of chromosome aberrations. In conclusion, chronic low dose radiation prevailing in Kerala coast did not show any significant effect on the basal frequency of chromosome aberrations among the adult population.
Collapse
Affiliation(s)
- Karuppasamy C V
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India.
| | - Ramachandran E N
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India
| | - Anil Kumar V
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India
| | - Vivek Kumar P R
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India
| | - Koya P K M
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India
| | - Jaikrishan G
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India
| | - Birajalaxmi Das
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group (BSG), Bhabha Atomic Research Centre (BARC), Kollam 691 001, Kerala, India; LLRRS, RB & HSD, BSG, BARC, Trombay, Mumbai 400 085, India.
| |
Collapse
|
6
|
Jain V, Das B. Global transcriptome profile reveals abundance of DNA damage response and repair genes in individuals from high level natural radiation areas of Kerala coast. PLoS One 2017; 12:e0187274. [PMID: 29161272 PMCID: PMC5697823 DOI: 10.1371/journal.pone.0187274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
The high level natural radiation areas (HLNRA) of Kerala coast in south west India is unique for its wide variation in the background radiation dose (<1.0mGy to 45mGy/year) and vast population size. Several biological studies conducted in this area did not reveal any adverse effects of chronic low dose and low dose rate radiation on human population. In the present study, global transcriptome analysis was carried out in peripheral blood mono-nuclear cells of 36 individuals belonging to different background dose groups [NLNRA, (Group I, ≤1.50 mGy/year) and three groups of HLNRA; Group II, 1.51–5.0 mGy/year), Group III, 5.01-15mGy/year and Group IV, >15.0 mGy/year] to find out differentially expressed genes and their biological significance in response to chronic low dose radiation exposure. Our results revealed a dose dependent increase in the number of differentially expressed genes with respect to different background dose levels. Gene ontology analysis revealed majority of these differentially expressed genes are involved in DNA damage response (DDR) signaling, DNA repair, cell cycle arrest, apoptosis, histone/chromatin modification and immune response. In the present study, 64 background dose responsive genes have been identified as possible chronic low dose radiation signatures. Validation of 30 differentially expressed genes was carried out using fluorescent based universal probe library. Abundance of DDR and DNA repair genes along with pathways such as MAPK, p53 and JNK in higher background dose groups (> 5.0mGy/year) indicated a possible threshold dose for DDR signaling and are plausible reason of observing in vivo radio-adaptive response and non-carcinogenesis in HLNRA population. To our knowledge, this is the first study on molecular effect of chronic low dose radiation exposure on human population from high background radiation areas at transcriptome level using high throughput approach. These findings have tremendous implications in understanding low dose radiation biology especially, the effect of low dose radiation exposure in humans.
Collapse
Affiliation(s)
- Vinay Jain
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
- * E-mail: ,
| |
Collapse
|
7
|
Efficient repair of DNA double strand breaks in individuals from high level natural radiation areas of Kerala coast, south-west India. Mutat Res 2017; 806:39-50. [PMID: 28963924 DOI: 10.1016/j.mrfmmm.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
High level natural radiation areas (HLNRA) of Kerala coastal strip (55km long and 0.5km wide) in southwest India exhibit wide variations in the level of background dose (< 1.0-45.0mGy/year) due to thorium deposits in the beach sand. The areas with ≤1.5mGy/year are considered as normal level natural radiation area (NLNRA), whereas areas with >1.5mGy/year are HLNRA. Individuals belonging to HLNRA were stratified into two groups, Low dose group (LDG: 1.51-5.0mGy/year) and high dose group (HDG: >5.0mGy/year). The mean annual dose received by the individuals from NLNRA, LDG and HDG was 1.3±0.1, 2.7±0.9 and 9.4±2.3mGy/year, respectively. Induction and repair of DNA double strand breaks (DSBs) in terms of gamma-H2AX positive cells were analysed in peripheral blood mononuclear cells (PBMCs) using flow cytometry. Induction of DSBs was studied at low (0.25Gy) and high challenge doses (1.0 and 2.0Gy) of gamma radiation in 78 individuals {NLNRA, N=23; HLNRA (LDG, N=21 and HDG, N=34)}. Repair kinetics of DSBs were evaluated in PBMCs of 30 individuals belonging to NLNRA (N=8), LDG (N=7) and HDG (N=15) at low (0.25Gy) and high doses (2.0Gy) of gamma radiation. Transcription profile of DNA damage response (DDR) and DSB repair genes involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) pathways was analysed after a challenge dose of 2.0Gy in PBMCs of NLNRA (N=10) and HDG, HLNRA (N=10) group. Our results revealed significantly lower induction and efficient repair of DSBs in HLNRA groups as compared to NLNRA. Transcription profile of DCLRE1C, XRCC4, NBS1 and CDK2 showed significant up-regulation (p≤0.05) in HDG at a challenge dose of 2.0Gy indicating active involvement of DDR and DSB repair pathways. In conclusion, lower induction and efficient repair of DNA DSBs in HLNRA groups is suggestive of an in vivo radio-adaptive response due to priming effect of chronic low dose radiation prevailing in this area.
Collapse
|
8
|
Ramachandran EN, Karuppasamy CV, Kumar VA, Soren DC, Kumar PRV, Koya PKM, Jaikrishan G, Das B. Radio-adaptive response in peripheral blood lymphocytes of individuals residing in high-level natural radiation areas of Kerala in the southwest coast of India. Mutagenesis 2017; 32:267-273. [PMID: 27831478 DOI: 10.1093/mutage/gew057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study investigates whether the chronic low-dose radiation exposure induces an in vivo radio-adaptive response in individuals from high-level natural radiation areas (HLNRA) of the Kerala coast. Peripheral blood samples from 54 adult male individuals aged between 26 and 65 years were collected for the study with written informed consent. Each of the whole blood sample was divided into three, one was sham irradiated, second and third was exposed to challenging doses of 1.0 and 2.0 Gy gamma radiation, respectively. Cytokinesis-block micronucleus (CBMN) assay was employed to study the radio-adaptive response. Seventeen individuals were from normal-level natural radiation area (NLNRA ≤1.5 mGy/year) and 37 from HLNRA (> 1.5 mGy/year). Based on the annual dose received, individuals from HLNRA were further classified into low-dose group (LDG, 1.51-5.0 mGy/year, N = 19) and high-dose group (HDG >5.0 mGy/year, N = 18). Basal frequency of micronucleus (MN) was comparable across the three dose groups (NLNRA, LDG and HDG, P = 0.64). Age of the individuals showed a significant effect on the frequency of MN after challenging dose exposures. The mean frequency of MN was significantly lower in elder (>40 years) individuals from HDG of HLNRA as compared to the young (≤40 years) individuals after 1.0 Gy (P < 0.001) and 2.0 Gy (P = 0.002) of challenging doses. However, young and elder individuals within NLNRA and LDG of HLNRA showed similar frequency of MN after the challenging dose exposures. Thus, increased level of chronic low-dose radiation (>5.0 mGy/year) seems to act as a priming dose resulting in the induction of an in vivo radio-adaptive response in elder individuals of the Kerala coast.
Collapse
Affiliation(s)
- E N Ramachandran
- Low Level Radiation Research Laboratory (LLRRL), Radiation Biology and Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala and
| | - C V Karuppasamy
- Low Level Radiation Research Laboratory (LLRRL), Radiation Biology and Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala and
| | - V Anil Kumar
- Low Level Radiation Research Laboratory (LLRRL), Radiation Biology and Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala and
| | - D C Soren
- Low Level Radiation Research Section (LLRRS), RB&HSD, Bio-Science Group, BARC, Trombay, Mumbai 400 085, India
| | - P R Vivek Kumar
- Low Level Radiation Research Laboratory (LLRRL), Radiation Biology and Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala and
| | - P K M Koya
- Low Level Radiation Research Laboratory (LLRRL), Radiation Biology and Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala and
| | - G Jaikrishan
- Low Level Radiation Research Laboratory (LLRRL), Radiation Biology and Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala and
| | - Birajalaxmi Das
- Low Level Radiation Research Section (LLRRS), RB&HSD, Bio-Science Group, BARC, Trombay, Mumbai 400 085, India
| |
Collapse
|
9
|
Jain V, Kumar PRV, Koya PKM, Jaikrishan G, Das B. Lack of increased DNA double-strand breaks in peripheral blood mononuclear cells of individuals from high level natural radiation areas of Kerala coast in India. Mutat Res 2016; 788:50-7. [PMID: 27063255 DOI: 10.1016/j.mrfmmm.2016.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/14/2016] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
The high level natural radiation area (HLNRA) of Kerala is a 55km long and 0.5km wide strip in south west coast of India. The level of background radiation in this area varies from <1.0mGy/year to 45.0mGy/year. It offers unique opportunity to study the effect of chronic low dose/low dose-rate radiation directly on human population. Spontaneous level of DNA double strand breaks (DSBs) was quantified in peripheral blood mononuclear cells of 91 random individuals from HLNRA (N=61, mean age: 36.1±7.43years) and normal level natural radiation area (NLNRA) (N=30, mean age: 35.5±6.35years) using gamma-H2AX as a marker. The mean annual dose received by NLNRA and HLNRA individuals was 1.28±0.086mGy/year and 8.28±4.96mGy/year, respectively. The spontaneous frequency of DSBs in terms of gamma-H2AX foci among NLNRA and HLNRA individuals were 0.095±0.009 and 0.084±0.004 per cell (P=0.22). The individuals from HLNRA were further classified as low dose group (LDG, 1.51-5.0mGy/year, mean dose: 2.63±0.76mGy/year) and high dose group (HDG, >5.0mGy/year, mean dose: 11.04±3.57mGy/year). The spontaneous frequency of gamma-H2AX foci per cell in NLNRA, LDG and HDG was observed to be 0.095±0.009, 0.096±0.008 and 0.078±0.004 respectively. Individuals belonging to HDG of HLNRA showed marginally lower frequency of DSBs as compared to NLNRA and LDG of HLNRA. This could be suggestive of either lower induction or better repair of DSBs in individuals from HDG of HLNRA. The present study indicated that 5.0mGy/year could be a possible threshold dose for DSB induction at chronic low-dose radiation exposure in vivo. However, further studies on DNA damage induction and repair kinetics are required to draw firm conclusions.
Collapse
Affiliation(s)
- Vinay Jain
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094, India
| | - P R Vivek Kumar
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - P K M Koya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G Jaikrishan
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| |
Collapse
|
10
|
Karuppasamy CV, Ramachandran EN, Kumar VA, Kumar PRV, Koya PKM, Jaikrishan G, Das B. Peripheral blood lymphocyte micronucleus frequencies in men from areas of Kerala, India, with high vs normal levels of natural background ionizing radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 800-801:40-5. [PMID: 27085474 DOI: 10.1016/j.mrgentox.2016.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/09/2016] [Indexed: 12/13/2022]
Abstract
We have measured the frequencies of micronuclei (MN) in adult male individuals living in areas of the Kerala coast, southwest India, with either high (HLNRA, >1.5mGy/year) or normal levels of natural ionizing radiation (NLNRA, ≤1.5mGy/year). Blood samples were obtained from 141 individuals, 94 from HLNRA and 47 from NLNRA, aged 18-72, and were subjected to the cytokinesis-block micronucleus (CBMN) assay. An average of 1835 binucleated (BN) cells per individual were scored. The overall frequency of MN (mean±SD) was 11.7±6.7 per 1000 BN cells. The frequencies of MN in the HLNRA (11.7±6.6) and NLNRA (11.6±6.7) were not statistically significantly different (P=0.59). However, a statistically significant (P<0.001) age-dependent increase in MN frequency was observed among individuals from both HLNRA and NLNRA. No natural background radiation dose-dependent increase in MN frequency was seen. MN frequency was not influenced by tobacco smoking or chewing but it was increased among individuals consuming alcohol. Chronic low-dose radiation in the Kerala coast did not have a significant effect on MN frequency among adult men.
Collapse
Affiliation(s)
- C V Karuppasamy
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India.
| | - E N Ramachandran
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India
| | - V Anil Kumar
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India
| | - P R Vivek Kumar
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India
| | - P K M Koya
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India
| | - G Jaikrishan
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India
| | - Birajalaxmi Das
- Low Level Radiation Research Laboratory, Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Science Group, Bhabha Atomic Research Centre (BARC), Beach Road, Kollam 691 001, Kerala, India; LLRRS, RB&HSD, BARC, Trombay, Mumbai 400 085, India.
| |
Collapse
|
11
|
Fibach E, Rachmilewitz EA. The Effect of Fermented Papaya Preparation on Radioactive Exposure. Radiat Res 2015; 184:304-13. [PMID: 26291738 DOI: 10.1667/rr14000.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to ionizing radiation causes cellular damage, which can lead to premature cell death or accumulation of somatic mutations, resulting in malignancy. The damage is mediated in part by free radicals, particularly reactive oxygen species. Fermented papaya preparation (FPP), a product of yeast fermentation of Carica papaya Linn, has been shown to act as an antioxidant. In this study, we investigated the potential of FPP to prevent radiation-induced damage. FPP (0-100 μg/ml) was added to cultured human foreskin fibroblasts and myeloid leukemia (HL-60) cells either before or after irradiation (0-18 Gy). After 1-3 days, the cells were assayed for: intracellular labile iron, measured by staining with calcein; reactive oxygen species generation, measured with dichlorofluorescein diacetate; apoptosis, determined by phosphatidylserine exposure; membrane damage, determined by propidium iodide uptake; and cell survival, determined by a cell proliferation assay. DNA damage was estimated by measuring 8-oxoguanine, a parameter of DNA oxidation, using a fluorescent-specific probe and by the comet assay. These parameters were also assayed in bone marrow cells of mice treated with FPP (by adding it to the drinking water) either before or after irradiation. Somatic mutation accumulation was determined in their peripheral red blood cells, and their survival was monitored. FPP significantly reduced the measured radiation-induced cytotoxic parameters. These findings suggest that FPP might serve as a radioprotector, and its effect on DNA damage and mutagenicity might reduce the long-term effects of radiation, such as primary and secondary malignancy.
Collapse
Affiliation(s)
- Eitan Fibach
- a Department of Hematology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
12
|
Dobrzyński L, Fornalski KW, Feinendegen LE. Cancer Mortality Among People Living in Areas With Various Levels of Natural Background Radiation. Dose Response 2015; 13:1559325815592391. [PMID: 26674931 PMCID: PMC4674188 DOI: 10.1177/1559325815592391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There are many places on the earth, where natural background radiation exposures are elevated significantly above about 2.5 mSv/year. The studies of health effects on populations living in such places are crucially important for understanding the impact of low doses of ionizing radiation. This article critically reviews some recent representative literature that addresses the likelihood of radiation-induced cancer and early childhood death in regions with high natural background radiation. The comparative and Bayesian analysis of the published data shows that the linear no-threshold hypothesis does not likely explain the results of these recent studies, whereas they favor the model of threshold or hormesis. Neither cancers nor early childhood deaths positively correlate with dose rates in regions with elevated natural background radiation.
Collapse
Affiliation(s)
| | | | - Ludwig E. Feinendegen
- Heinrich-Heine University, Düsseldorf, Germany
- BECS Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
13
|
Kumar PRV, Seshadri M, Jaikrishan G, Das B. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: Evaluation of DNA damage and repair using the alkaline comet assay. Mutat Res 2015; 775:59-65. [PMID: 25879710 DOI: 10.1016/j.mrfmmm.2015.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 03/15/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
This study investigates whether peripheral blood mononuclear cells (PBMCs) from inhabitants of Kerala in southwest India, exposed to chronic low dose natural radiation in vivo (>1 mSv year(-1)), respond with a radioadaptive response to a challenging dose of gamma radiation. Toward this goal, PBMCs isolated from 77 subjects from high-level natural radiation areas (HLNRA) and 37 subjects from a nearby normal level natural radiation area (NLNRA) were challenged with 2 Gy and 4 Gy gamma radiation. Subjects from HLNRA were classified based on the mean annual effective dose received, into low dose group (LDG) and high dose group (HDG) with mean annual effective doses of 2.69 mSv (N=43, range 1.07 mSv year(-1) to 5.55 mSv year(-1)) and 9.62 mSv (N = 34, range 6.07 mSv year(-1) to 17.41 mSv year(-1)), respectively. DNA strand breaks and repair kinetics (at 7 min, 15 min and 30 min after 4 Gy) were evaluated using the alkaline single cell gel electrophoresis (comet) assay. Initial levels of DNA strand breaks observed after either a 2 Gy or a 4 Gy challenging dose were significantly lower in subjects of the HDG from HLNRA compared to subjects of NLNRA (2 Gy, P = 0.01; 4 Gy, P = 0.02) and LDG (2 Gy P = 0.01; 4 Gy, P=0.05). Subjects of HDG from HLNRA showed enhanced rejoining of DNA strand breaks (HDG/NLNRA, P = 0.06) during the early stage of repair (within 7 min). However at later times a similar rate of rejoining of strand breaks was observed across the groups (HDG, LDG and NLNRA). Preliminary results from our study suggest in vivo chronic low-level natural radiation provides an initial exposure that allows an adaptation to a subsequent higher radiation exposure, perhaps through improving DNA repair via an unknown mechanism. Therefore, further investigations would be necessary in this population to understand the biological and health effects of chronic low-level natural radiation exposures.
Collapse
Affiliation(s)
- P R Vivek Kumar
- Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala, India.
| | - M Seshadri
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G Jaikrishan
- Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
14
|
Shelke S, Das B. Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to γ radiation. Mutagenesis 2014; 30:365-79. [PMID: 25473122 DOI: 10.1093/mutage/geu081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ionising radiation induces single-strand breaks, double-strand breaks (DSB) and base damages in human cell. DSBs are the most deleterious and if not repaired may lead to genomic instability and cell death. DSB can be repaired through non-homologous end joining (NHEJ) pathway in resting lymphocytes. In this study, NHEJ genes and proteins were studied in irradiated human peripheral blood mononuclear cells (PBMC) at resting stage. Dose-response, time point kinetics and adaptive-response studies were conducted in irradiated PBMC at various end points such as DNA damage quantitation, transcription and protein expression profile. Venous blood samples were collected from 20 random, normal and healthy donors with written informed consent. PBMC was separated and irradiated with various doses between 0.1 and 2.0 Gy ((60)CO-γ source) for dose-response study. Repair kinetics of DNA damage and time point changes in expression of genes and proteins were studied in post-irradiated PBMC at 2.0 Gy at various time points up to 240 min. Adaptive-response study was conducted with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4-h incubation. Our results revealed that Ku70, Ku80, XLF and Ligase IV were significantly upregulated (P < 0.05) at 4-h post-irradiation at transcript and protein level. Adaptive-response study showed significantly increased expression of the proteins involved in NHEJ, suggesting their role in adaptive response in human PBMC at G0/G1, which has important implications to human health.
Collapse
Affiliation(s)
- Shridevi Shelke
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
15
|
The comet assay as a tool for human biomonitoring studies: The ComNet Project. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 759:27-39. [DOI: 10.1016/j.mrrev.2013.10.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
16
|
Abstract
PURPOSE To review the cellular mechanisms of hormetic effects induced by low dose and low dose rate ionising radiation in model systems, and to call attention to the possible role of autophagy in some hormetic effects. RESULTS AND CONCLUSIONS Very low radiation doses stimulate cell proliferation by changing the equilibrium between the phosphorylated and dephosphorylated forms of growth factor receptors. Radioadaptation is induced by various weak stress stimuli and depends on signalling events that ultimately decrease the molecular damage expression at the cellular level upon subsequent exposure to a moderate radiation dose. Ageing and cancer result from oxidative damage under oxidative stress conditions; nevertheless, ROS are also prominent inducers of autophagy, a cellular process that has been shown to be related both to ageing retardation and cancer prevention. A balance between the signalling functions and damaging effects of ROS seems to be the most important factor that decides the fate of the mammalian cell when under oxidative stress conditions, after exposure to ionising radiation. Not enough is yet known on the pre-requirements for maintaining such a balance. Given the present stage of investigation into radiation hormesis, the application of the conclusions from experiments on model systems to the radiation protection regulations would not be justified.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
| |
Collapse
|