1
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
2
|
McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol 2024; 34:276-283. [PMID: 38880536 DOI: 10.1016/j.semradonc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiotherapy (SFRT) includes historical grid therapy approaches but more recently encompasses the controlled introduction of one or more cold dose regions using intensity modulation delivery techniques. The driving hypothesis behind SFRT is that it may allow for an increased immune response that is otherwise suppressed by radiation effects. With both two- and three-dimensional SFRT approaches, SFRT dose distributions typically include multiple dose cold spots or valleys. Despite its unconventional methods, reported clinical experience shows that SFRT can sometimes induce marked tumor regressions, even in patients with large hypoxic tumors. Preclinical models using extreme dose distributions (i.e., half-sparing) have been shown to nevertheless result in full tumor eradications, a more robust immune response, and systemic anti-tumor immunity. SFRT takes advantage of the complementary immunomodulatory features of low- and high-dose radiotherapy to integrate the delivery of both into a single target. Clinical trials using three-dimensional SFRT (i.e., lattice-like dose distributions) have reported both promising tumor and toxicity results, and ongoing clinical trials are investigating synergy between SFRT and immunotherapies.
Collapse
Affiliation(s)
| | | | | | - John Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph O Deasy
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | |
Collapse
|
3
|
Suzuki M, Funayama T, Suzuki M, Kobayashi Y. Radiation-quality-dependent bystander cellular effects induced by heavy-ion microbeams through different pathways. JOURNAL OF RADIATION RESEARCH 2023; 64:824-832. [PMID: 37658690 PMCID: PMC10516730 DOI: 10.1093/jrr/rrad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Indexed: 09/03/2023]
Abstract
We investigated the radiation-quality-dependent bystander cellular effects using heavy-ion microbeams with different ion species. The heavy-ion microbeams were produced in Takasaki Ion Accelerators for Advanced Radiation Application, National Institutes for Quantum Science and Technology. Carbon (12C5+, 220 MeV), neon (20Ne7+, 260 MeV) and argon (40Ar13+, 460 MeV) ions were used as the microbeams, collimating the beam size with a diameter of 20 μm. After 0.5 and 3 h of irradiation, the surviving fractions (SFs) are significantly lower in cells irradiated with carbon ions without a gap-junction inhibitor than those irradiated with the inhibitor. However, the same SFs with no cell killing were found with and without the inhibitor at 24 h. Conversely, no cell-killing effect was observed in argon-ion-irradiated cells at 0.5 and 3 h; however, significantly low SFs were found at 24 h with and without the inhibitor, and the effect was suppressed using vitamin C and not dimethyl sulfoxide. The mutation frequency (MF) in cells irradiated with carbon ions was 8- to 6-fold higher than that in the unirradiated control at 0.5 and 3 h; however, no mutation was observed in cells treated with the gap-junction inhibitor. At 24 h, the MFs induced by each ion source were 3- to 5-fold higher and the same with and without the inhibitor. These findings suggest that the bystander cellular effects depend on the biological endpoints, ion species and time after microbeam irradiations with different pathways.
Collapse
Affiliation(s)
- Masao Suzuki
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba-shi, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| |
Collapse
|
4
|
Tang H, Cai L, He X, Niu Z, Huang H, Hu W, Bian H, Huang H. Radiation-induced bystander effect and its clinical implications. Front Oncol 2023; 13:1124412. [PMID: 37091174 PMCID: PMC10113613 DOI: 10.3389/fonc.2023.1124412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
For many years, targeted DNA damage caused by radiation has been considered the main cause of various biological effects. Based on this paradigm, any small amount of radiation is harmful to the organism. Epidemiological studies of Japanese atomic bomb survivors have proposed the linear-non-threshold model as the dominant standard in the field of radiation protection. However, there is increasing evidence that the linear-non-threshold model is not fully applicable to the biological effects caused by low dose radiation, and theories related to low dose radiation require further investigation. In addition to the cell damage caused by direct exposure, non-targeted effects, which are sometimes referred to as bystander effects, abscopal effects, genetic instability, etc., are another kind of significant effect related to low dose radiation. An understanding of this phenomenon is crucial for both basic biomedical research and clinical application. This article reviews recent studies on the bystander effect and summarizes the key findings in the field. Additionally, it offers a cross-sectional comparison of bystander effects caused by various radiation sources in different cell types, as well as an in-depth analysis of studies on the potential biological mechanisms of bystander effects. This review aims to present valuable information and provide new insights on the bystander effect to enlighten both radiobiologists and clinical radiologists searching for new ways to improve clinical treatments.
Collapse
Affiliation(s)
- Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zihe Niu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Haitong Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Huahui Bian
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Hao Huang, ; Huahui Bian, ; Wentao Hu,
| |
Collapse
|
5
|
Constanzo J, Garcia-Prada CD, Pouget JP. Clonogenic assay to measure bystander cytotoxicity of targeted alpha-particle therapy. Methods Cell Biol 2023; 174:137-149. [PMID: 36710047 DOI: 10.1016/bs.mcb.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiation therapy induces targeted effects in the cells that are irradiated and also non-targeted effects (i.e. bystander effects) in non-irradiated cells that are close to or at short distance (<∼1 mm) from irradiated cells. Bystander effects are mediated by intercellular communications and may result in cytotoxic and genotoxic modifications. Their occurrence and relative contribution to the irradiation outcome are influenced by several parameters among which the particle linear energy transfer seems to be prominent. Bystander effects were first observed after external radiation therapy, but have been described also following targeted radionuclide therapy. Therefore, we propose a method to investigate their occurrence in experimental conditions where cells are exposed to radiopharmaceuticals. In this approach, clonogenic cell death is the biological endpoint of the bystander effects caused by irradiation with alpha particles (a potent inducer of the bystander response).
Collapse
Affiliation(s)
- Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Clara Diaz Garcia-Prada
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
| |
Collapse
|
6
|
More efficient induction of genotoxicity by high-LET Fe-particle radiation than low-LET X-ray radiation at low doses. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Gonon G, de Toledo SM, Perumal V, Jay-Gerin JP, Azzam EI. Impact of the redox environment on propagation of radiation bystander effects: The modulating effect of oxidative metabolism and oxygen partial pressure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503559. [PMID: 36462795 DOI: 10.1016/j.mrgentox.2022.503559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Redox modulated pathways play important roles in out-of-field effects of ionizing radiation. We investigated how the redox environment impacts the magnitude of propagation of stressful effects from irradiated to bystander cells. Normal human fibroblasts that have incorporated [3H]-thymidine were intimately co-cultured with bystander cells in a strategy that allowed isolation of bystander cells with high purity. The antioxidant glutathione peroxidase (GPX) was maintained either at wild-type conditions or overexpressed in the bystanders. Following 24 h of coculture, levels of stress-responsive p21Waf1, p-Hdm2, and connexin43 proteins were increased in bystander cells expressing wild-type GPX relative to respective controls. These levels were significantly attenuated when GPX was ectopically overexpressed, demonstrating by direct approach the involvement of a regulator of intracellular redox homeostasis. Evidence of participation of pro-oxidant compounds was generated by exposing confluent cell cultures to low fluences of 3.7 MeV α particles in presence or absence of t-butyl hydroperoxide. By 3 h post-exposure to fluences wherein only ∼2% of cells are traversed through the nucleus by a particle track, increases in chromosomal damage were greater than expected in absence of the drug (p < 0.001) and further enhanced in its presence (p < 0.05). While maintenance and irradiation of cell cultures at low oxygen pressure (pO2 3.8 mm Hg) to mimic in vivo still supported the participation of bystander cells in responses assessed by chromosomal damage and stress-responsive protein levels (p < 0.001), the effects were attenuated compared to ambient pO2 (155 mm Hg) (p < 0.05). Together, the results show that bystander effects are attenuated at below ambient pO2 and when metabolic oxidative stress is reduced but increased when the basal redox environment tilts towards oxidizing conditions. They are consistent with bystander effects being independent of radiation dose rate.
Collapse
Affiliation(s)
- Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Sonia M de Toledo
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Venkatachalam Perumal
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Jean-Paul Jay-Gerin
- Département de médecine nucléaire et de radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.
| |
Collapse
|
8
|
Zhang Z, Li K, Hong M. Radiation-Induced Bystander Effect and Cytoplasmic Irradiation Studies with Microbeams. BIOLOGY 2022; 11:biology11070945. [PMID: 36101326 PMCID: PMC9312136 DOI: 10.3390/biology11070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Microbeams are useful tools in studies on non-target effects, such as the radiation-induced bystander effect, and responses related to cytoplasmic irradiation. A micrometer or even sub-micrometer-level beam size enables the precise delivery of radiation energy to a specific target. Here we summarize the observations of the bystander effect and the cytoplasmic irradiation-related effect using different kinds of microbeam irradiators as well as discuss the cellular and molecular mechanisms that are involved in these responses. Non-target effects may increase the detrimental effect caused by radiation, so a more comprehensive knowledge of the process will enable better evaluation of the damage resulting from irradiation. Abstract Although direct damage to nuclear DNA is considered as the major contributing event that leads to radiation-induced effects, accumulating evidence in the past two decades has shown that non-target events, in which cells are not directly irradiated but receive signals from the irradiated cells, or cells irradiated at extranuclear targets, may also contribute to the biological consequences of exposure to ionizing radiation. With a beam diameter at the micrometer or sub-micrometer level, microbeams can precisely deliver radiation, without damaging the surrounding area, or deposit the radiation energy at specific sub-cellular locations within a cell. Such unique features cannot be achieved by other kinds of radiation settings, hence making a microbeam irradiator useful in studies of a radiation-induced bystander effect (RIBE) and cytoplasmic irradiation. Here, studies on RIBE and different responses to cytoplasmic irradiation using microbeams are summarized. Possible mechanisms related to the bystander effect, which include gap-junction intercellular communications and soluble signal molecules as well as factors involved in cytoplasmic irradiation-induced events, are also discussed.
Collapse
Affiliation(s)
- Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85280901
| |
Collapse
|
9
|
Buonanno M, Gonon G, Pandey BN, Azzam EI. The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. Int J Radiat Biol 2022; 99:964-982. [PMID: 35559659 PMCID: PMC9809126 DOI: 10.1080/09553002.2022.2078006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE The assumption that traversal of the cell nucleus by ionizing radiation is a prerequisite to induce genetic damage, or other important biological responses, has been challenged by studies showing that oxidative alterations extend beyond the irradiated cells and occur also in neighboring bystander cells. Cells and tissues outside the radiation field experience significant biochemical and phenotypic changes that are often similar to those observed in the irradiated cells and tissues. With relevance to the assessment of long-term health risks of occupational, environmental and clinical exposures, measurable genetic, epigenetic, and metabolic changes have been also detected in the progeny of bystander cells. How the oxidative damage spreads from the irradiated cells to their neighboring bystander cells has been under intense investigation. Following a brief summary of the trends in radiobiology leading to this paradigm shift in the field, we review key findings of bystander effects induced by low and high doses of various types of radiation that differ in their biophysical characteristics. While notable mechanistic insights continue to emerge, here the focus is on the many means of intercellular communication that mediate these effects, namely junctional channels, secreted molecules and extracellular vesicles, and immune pathways. CONCLUSIONS The insights gained by studying radiation bystander effects are leading to a basic understanding of the intercellular communications that occur under mild and severe oxidative stress in both normal and cancerous tissues. Understanding the mechanisms underlying these communications will likely contribute to reducing the uncertainty of predicting adverse health effects following exposure to low dose/low fluence ionizing radiation, guide novel interventions that mitigate adverse out-of-field effects, and contribute to better outcomes of radiotherapeutic treatments of cancer. In this review, we highlight novel routes of intercellular communication for investigation, and raise the rationale for reconsidering classification of bystander responses, abscopal effects, and expression of genomic instability as non-targeted effects of radiation.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York, 10032, USA
| | - Géraldine Gonon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSESANTE/SERAMED/LRAcc, 92262, Fontenay-aux-Roses, France
| | - Badri N. Pandey
- Bhabha Atomic Research Centre, Radiation Biology and Health Sciences Division, Trombay, Mumbai 400 085, India
| | - Edouard I. Azzam
- Radiobiology and Health Branch, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Autsavapromporn N, Kobayashi A, Liu C, Jaikang C, Tengku Ahmad TA, Oikawa M, Konishi T. Hypoxia and Proton microbeam: Role of Gap Junction Intercellular Communication in Inducing Bystander Responses on Human Lung Cancer Cells and Normal Cells. Radiat Res 2022; 197:122-130. [PMID: 34634126 DOI: 10.1667/rade-21-00112.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Cuihua Liu
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Masakazu Oikawa
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
11
|
Pouget JP. Basics of radiobiology. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
14
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
15
|
ATR-FTIR spectroscopy probing of structural alterations in the cellular membrane of abscopal liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183726. [PMID: 34375629 DOI: 10.1016/j.bbamem.2021.183726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
In this study, we utilize ATR-FTIR spectroscopy to investigate the structural damages in the cell membrane lipids and proteins as a result of the oxidative stress in abscopal liver tissue of rats either whole-body, cranially or lower limb irradiated as compared with sham-irradiated group. We also question whether the original irradiation region would influence the induction of the abscopal effect. The data present compelling evidence that an abscopal effect was induced in the liver tissue following both cranial and lower limb irradiations, marked by damage in the membrane-associated lipids and proteins. Lipid damage manifestation is evident by; 1) decrease in the lipid/protein ratio. 2) Degradation of lipid as marked by the decrease in the area ratio CH 2 asymmetric/CH 3 asymmetric stretching bands. 3) Increase in the carbonyl content evident by the increase in the band area ratio of carbonyl ester/lipid. 4) Increase in the degree of methylation as indicated by the increase in the band area ratio of CH3/lipid. 5) Disorder in the phospholipid acyl chains marked by the shift in the CH2 asymmetric stretching and olefinic HCCH absorption bands. Protein damage was indicated by 1) Shifts in the position of amide I and amide II bands. 2) Decrease in the area ratio amide I/amide II. 3) Broadening in amide II band. Our data strongly suggest similar induction of the abscopal effect as a result of either cranial or lower limb irradiation, which means that the original irradiation region did not influence the induced abscopal effect in the examined system.
Collapse
|
16
|
Klein PM, Parihar VK, Szabo GG, Zöldi M, Angulo MC, Allen BD, Amin AN, Nguyen QA, Katona I, Baulch JE, Limoli CL, Soltesz I. Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiol Dis 2021; 151:105252. [PMID: 33418069 DOI: 10.1016/j.nbd.2021.105252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.
Collapse
Affiliation(s)
- Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America.
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - Miklós Zöldi
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Amal N Amin
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States of America
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America; Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA 94305, United States of America
| |
Collapse
|
17
|
Zabihzadeh M, Rabiei A, Shahbazian H, Razmjoo S. Investigating the Dosimetric Characteristics of Microbeam Radiation Treatment. JOURNAL OF MEDICAL SIGNALS & SENSORS 2021; 11:45-51. [PMID: 34026590 PMCID: PMC8043115 DOI: 10.4103/jmss.jmss_12_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND High-radiation therapeutic gain could be achieved by the modern technique of microbeam radiation treatment (MRT). The aim of this study was to investigate the dosimetric properties of MRT. METHODS The EGSnrc Monte Carlo (MC) code system was used to transport photons and electrons in MRT. The mono-energetic beams (1 cm × 1 cm array) of 50, 100, and 150 keV and the spectrum photon beam (European Synchrotron Radiation Facility [ESRF]) were modeled to transport through multislit collimators with the aperture's widths of 25 and 50 μm and the center-to-center (c-t-c) distance between two adjacent microbeams (MBs) of 200 μm. The calculated phase spaces at the upper surface of water phantom (1 cm × 1 cm) were implemented in DOSXYZnrc code to calculate the percentage depth dose (PDD), the dose profile curves (in depths of 0-1, 1-2, and 3-4 cm), and the peak-to-valley dose ratios (PVDRs). RESULTS The PDD, dose profile curves, and PVDRs were calculated for different effective parameters. The more flatness of lateral dose profile was obtained for the ESRF spectrum MB. With constant c-t-c distance, an increase in the MB size increased the peak and valley dose; simultaneously, the PVDR was larger for the 25 μm MB (33.5) compared to 50 μm MB (21.9) beam, due to the decreased scattering photons followed to the lower overlapping of the adjacent MBs. An increase in the depth decreased the PVDRs (i.e., 54.9 in depth of 0-1 cm). CONCLUSION Our MC model of MRT successfully calculated the effect of dosimetric parameters including photon's energy, beam width, and depth to estimate the dose distribution.
Collapse
Affiliation(s)
- Mansour Zabihzadeh
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Rabiei
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hojattollah Shahbazian
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sasan Razmjoo
- Department of Clinical Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Griffin RJ, Prise KM, McMahon SJ, Zhang X, Penagaricano J, Butterworth KT. History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & FLASH radiotherapy. Br J Radiol 2020; 93:20200217. [PMID: 32706989 DOI: 10.1259/bjr.20200217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The effects of various forms of ionising radiation are known to be mediated by interactions with cellular and molecular targets in irradiated and in some cases non-targeted tissue volumes. Despite major advances in advanced conformal delivery techniques, the probability of normal tissue complication (NTCP) remains the major dose-limiting factor in escalating total dose delivered during treatment. Potential strategies that have shown promise as novel delivery methods in achieving effective tumour control whilst sparing organs at risk involve the modulation of critical dose delivery parameters. This has led to the development of techniques using high dose spatial fractionation (GRID) and ultra-high dose rate (FLASH) which have translated to the clinic. The current review discusses the historical development and biological basis of GRID, microbeam and FLASH radiotherapy as advanced delivery modalities that have major potential for widespread implementation in the clinic in future years.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Xin Zhang
- Department of Radiation Oncology, Boston University Medical Centre, Boston, MA, USA
| | - Jose Penagaricano
- Department of Radiation Oncology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
19
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
20
|
Suzuki M, Yasuda N, Kitamura H. Lethal and mutagenic bystander effects in human fibroblast cell cultures subjected to low-energy-carbon ions. Int J Radiat Biol 2019; 96:179-186. [PMID: 31633439 DOI: 10.1080/09553002.2020.1683637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: We studied lethal and mutagenic bystander effects in normal human fibroblasts irradiated with low-energy-carbon ions.Materials and methods: After cells reached confluence, cells were irradiated with initial energies of 6 MeV/n carbon ions. The residual energy and LET value were 4.6 MeV/n and 309 keV/µm. The doses used for survival and mutational studies were 0.082 and 0.16 Gy. Irradiation was carried out using 4 different irradiation conditions and plating conditions: (1) The entire cell area on the Mylar film was irradiated (We abbreviate as 'all irradiation'); (2) Irradiated and unirradiated cells were pooled in a 1:1 ratio and plated as a single culture until the plating for lethal and mutagenic experiments (We abbreviate as 'mixed population'); (3) Only half of the area on the Mylar film were irradiated using an ion-beam stopper (We abbreviate as 'half irradiation'); and (4) Only half of the area of the cells were irradiated, and a specific inhibitor of gap junctions was added to the culture (We abbreviate as 'half irradiation with inhibitor'). Cell samples were analyzed for lethal and mutagenic bystander effects, including a PCR evaluation of the mutation spectrum.Results: The surviving fraction of all irradiation was the same as the half irradiation case. The surviving fractions of both mixed population and the half irradiation with inhibitor were the same level and higher than those of all irradiation and half irradiation. The mutation frequencies at the HPRT (the hypoxanthine-guanine phosphoribosyl transferase) locus of all irradiation and half irradiation were at the same level and were higher than those of mixed population and half irradiation with inhibitor, respectively.Conclusion: There is evidence that the bystander effects for both lethality and mutagenicity occurred in the unirradiated half of the cells, in which only half of the cells were irradiated with the carbon ions. These results suggest that the bystander cellular effects via gap-junction-mediated cell-cell communication are induced by high-LET-carbon ions.
Collapse
Affiliation(s)
- Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nakahiro Yasuda
- Research Institute of Nuclear Engineering, University of Fukui, Tsuruga, Japan
| | - Hisashi Kitamura
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
21
|
Kanagaraj K, Rajan V, Pandey BN, Thayalan K, Venkatachalam P. Primary and secondary bystander effect and genomic instability in cells exposed to high and low linear energy transfer radiations. Int J Radiat Biol 2019; 95:1648-1658. [PMID: 31486717 DOI: 10.1080/09553002.2019.1665208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose: Non-Targeted effects (NTE), such as bystander effect (BE) and genomic instability (GI) challenge central dogma of radiation biology. Moreover, there is a need to understand its universality in different type of cells and radiation quality.Materials and method: To study BE (primary and secondary) and GI Human adult dermal fibroblast (HADF) and peripheral blood lymphocytes (PBL) were exposed to low fluence of 241Am alpha (α) particle and 6 MV X-ray. The BE was carried out by means of co-culture methodology after exposing the cells to both types of radiation and damage was measured using micronucleus assay (MN) and chromosomal aberration assay (CA) in the p1 cells while the GI was followed up in their progeny.Results: A dose-dependent increase in DNA damages (MN and CA) was observed in directly irradiated and bystander cells. The magnitude of BE was higher (6 fold) in cells co-cultured with the α-irradiated cells than that of with X-irradiated cells. Cross exposure of both cell types confirms that radiation induced BE is cell type dependent. In addition, induced DNA damage persisted for a longer population doubling in α-particle irradiated cells.Conclusion: This work adds evidence to secondary bystander response generated from primary bystander normal cells and its dependence to radiation quality.
Collapse
Affiliation(s)
- K Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - V Rajan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri N Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - K Thayalan
- Department of Radiation oncology, Kamakshi Memorial Hospital, Chennai, India
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
22
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Eleojo Musa A. Genomic Instability and Carcinogenesis of Heavy Charged Particles Radiation: Clinical and Environmental Implications. ACTA ACUST UNITED AC 2019; 55:medicina55090591. [PMID: 31540340 PMCID: PMC6780199 DOI: 10.3390/medicina55090591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022]
Abstract
One of the uses of ionizing radiation is in cancer treatment. The use of heavy charged particles for treatment has been introduced in recent decades because of their priority for deposition of radiation energy in the tumor, via the Bragg peak phenomenon. In addition to medical implications, exposure to heavy charged particles is a crucial issue for environmental and space radiobiology. Ionizing radiation is one of the most powerful clastogenic and carcinogenic agents. Studies have shown that although both low and high linear energy transfer (LET) radiations are carcinogenic, their risks are different. Molecular studies have also shown that although heavy charged particles mainly induce DNA damage directly, they may be more potent inducer of endogenous generation of free radicals compared to the low LET gamma or X-rays. It seems that the severity of genotoxicity for non-irradiated bystander cells is potentiated as the quality of radiation increases. However, this is not true in all situations. Evidence suggests the involvement of some mechanisms such as upregulation of pro-oxidant enzymes and change in the methylation of DNA in the development of genomic instability and carcinogenesis. This review aimed to report important issues for genotoxicity of carcinogenic effects of heavy charged particles. Furthermore, we tried to explain some mechanisms that may be involved in cancer development following exposure to heavy charged particles.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan 8715988141, Iran.
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan 62010, Iraq.
- Misan Radiotherapy Center, Misan Health Directorate, Ministry of Health Environment, Misan 62010, Iraq.
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran 1416753955, Iran.
- Department of Physics, Federal University of Technology, Minna 65, Nigeria.
| |
Collapse
|
23
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Wang YY, Huang JL, Yin XX. A Novel Role of Connexin 40-Formed Channels in the Enhanced Efficacy of Photodynamic Therapy. Front Oncol 2019; 9:595. [PMID: 31338328 PMCID: PMC6629863 DOI: 10.3389/fonc.2019.00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Despite responses to initial treatment of photodynamic therapy (PDT) being promising, a recurrence rate exists. Thus, finding novel therapeutic targets to enhance PDT efficacy is an urgent need. Reports indicate that connexin (Cx) 40 plays an important role in tumor angiogenesis and growth. However, it is unknown whether Cx40-composed channels have effects on PDT efficacy. The study uniquely demonstrated that Cx40-formed channels could enhance the phototoxicity of PDT to malignant cells in vitro and in vivo. Specifically, Cx40-formed channels at high cell density could increase PDT photocytotoxicity. This action was substantially restricted when Cx40 expression was not induced or Cx40 channels were restrained. Additionally, the presence of Cx40-composed channels enhanced the phototoxicity of PDT in the tumor xenografts. The above results indicate that enhancing the function of Cx40-formed channels increases PDT efficacy. The enhancement of PDT efficacy mediated by Cx40 channels was related with intracellular pathways mediated by ROS and calcium pathways, but not the lipid peroxide-mediated pathway. This work demonstrates the capacity of Cx40-mediated channels to increase PDT efficacy and suggests that therapeutic strategies designed to maintain or enhance Cx40 expression and/or channels composed by Cx40 may increase the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi, China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuan-Yuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Heavy-Ion Microbeams for Biological Science: Development of System and Utilization for Biological Experiments in QST-Takasaki. QUANTUM BEAM SCIENCE 2019. [DOI: 10.3390/qubs3020013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Target irradiation of biological material with a heavy-ion microbeam is a useful means to analyze the mechanisms underlying the effects of heavy-ion irradiation on cells and individuals. At QST-Takasaki, there are two heavy-ion microbeam systems, one using beam collimation and the other beam focusing. They are installed on the vertical beam lines of the azimuthally-varying-field cyclotron of the TIARA facility for analyzing heavy-ion radiation effects on biological samples. The collimating heavy-ion microbeam system is used in a wide range of biological research not only in regard to cultured cells but also small individuals, such as silkworms, nematode C. elegans, and medaka fish. The focusing microbeam system was designed and developed to perform more precise target irradiation that cannot be achieved through collimation. This review describes recent updates of the collimating heavy ion microbeam system and the research performed using it. In addition, a brief outline of the focusing microbeam system and current development status is described.
Collapse
|
25
|
Wu DP, Ding CH, Bai LR, Zhou Y, Yang SM, Zhang F, Huang JL. Decreased phototoxicity of photodynamic therapy by Cx32/Cx26-composed GJIC: A "Good Samaritan" effect. Lasers Surg Med 2019; 51:301-308. [PMID: 30615224 DOI: 10.1002/lsm.23044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) has been widely used to treat malignant tumors. Our previous studies indicated that connexin (Cx) 32- and Cx26-composed gap junctional intercellular communication (GJIC) could improve the phototoxicity of PDT. However, the role of heterotypic Cx32/Cx26-formed GJIC in PDT phototoxicity is still unknown. Thus, the present study was aimed to investigate the effect of Cx32/Cx26-formed GJIC on PDT efficacy. METHODS CCK8 assay was used to detect cell survival after PDT. Western blot assay was utilized to detect Cx32/Cx26 expression. "Parachute" dye-coupling assay was performed to measure the function of GJ channels. The intracellular Ca2+ concentrations were determined using flow cytometer. ELISA assay was performed to detect the intracellular levels of PGE2 and cAMP. RESULTS The present study demonstrates there is a Cx32/Cx26-formed GJIC-dependent reduction of phototoxicity when cells were exposure to low concentration of Photofrin. Such a protective action is missing at low cell density due to the lack of GJ coupling. Under high-cell density condition, where there is opportunity for the cells to contact each other and form GJ, suppressing Cx32/Cx26-formed GJIC by either inhibiting the expression of Cx32/Cx26 or pretreating with GJ channel inhibitor augments PDT phototoxicity after cells were treated with at 2.5 µg/ml Photofrin. The above results suggest that at low Photofrin concentration, the presence of Cx32/Cx26-formed GJIC may decrease the phototoxicity of PDT, leading to the insensitivity of malignant cells to PDT treatment. The GJIC-mediated PDT insensitivity was associated with Ca2+ and prostaglandin E2 (PGE2 ) signaling pathways. CONCLUSION The present study provides a cautionary note that for tumors expressing Cx32/Cx26, the presence of Cx32/Cx26-composed GJIC may cause the resistance of tumor cells to PDT. Oppositely, treatment strategies designed to downregulate the expression of Cx32/Cx26 or restrain the function of Cx32/Cx26-mediated GJIC may increase the sensitivity of malignant cell to PDT. Lasers Surg. Med. 51:301-308, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi City 214062, Jiangsu Province, P. R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| |
Collapse
|
26
|
Mukherjee S, Chakraborty A. Radiation-induced bystander phenomenon: insight and implications in radiotherapy. Int J Radiat Biol 2019; 95:243-263. [PMID: 30496010 DOI: 10.1080/09553002.2019.1547440] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sharmi Mukherjee
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| | - Anindita Chakraborty
- Stress biology Lab, UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal, India
| |
Collapse
|
27
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Huang JL. A novel role of Cx43-composed GJIC in PDT phototoxicity: an implication of Cx43 for the enhancement of PDT efficacy. Int J Biol Sci 2019; 15:598-609. [PMID: 30745846 PMCID: PMC6367575 DOI: 10.7150/ijbs.29582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 11/07/2022] Open
Abstract
In spite of initially promising responses, 5-year recurrence after photodynamic therapy (PDT) sustains high level and an increase in PDT effectiveness is needed. It has been demonstrated that gap junctional intercellular communication (GJIC) formed by Connexin (Cx)43 could improve the transfer of "death signal" between cells, thereby causing the enhancement of cytotoxicity of chemotherapeutics and suicide gene therapy. Nevertheless, whether Cx43-composed GJIC has an effect on PDT phototoxicity remains unknown. This study showed that Cx43-formed GJIC could improve PDT phototoxicity to tumor cells in vitro and in vivo. Specifically, Cx43-formed GJIC under the condition of high cellular density could improve PDT phototoxicity in Cx43-transfected HeLa cells and Cx43-expressing U87 glioma cells. This effect was remarkably inhibited when Cx43 was not expressed or Cx43-formed GJ channels were prohibited. Additionally, the presence of Cx43-mediated GJIC could decrease the mean RTV and tumor weights of xenografts after Photofrin-PDT. The improved PDT efficacy by Cx43-composed GJIC was correlated with stress signaling pathways mediated by ROS, calcium and lipid peroxide. The present study demonstrates the presence of Cx43-composed GJIC improves PDT phototoxicity and suggests that therapeutic strategies designed to upregulate the expression of Cx43 or enhance Cx43-mediated GJIC function may increase the sensitivity of malignant cell to PDT, leading to the increment of PDT efficacy. Oppositely, factors that retard Cx43 expression or prohibit the function of Cx43-mediated GJIC may cause insensitivity of malignant cells to PDT, leading to PDT resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Li-Ru Bai
- Department of Pharmacy,Wuxi Ninth Affiliated Hospital of Suzhou University, 214062, Wuxi City, Jiangsu Province, P.R. China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
28
|
Autsavapromporn N, Liu C, Kobayashi A, Ahmad TAFT, Oikawa M, Dukaew N, Wang J, Wongnoppavichb A, Konishic T. Emerging Role of Secondary Bystander Effects Induced by Fractionated Proton Microbeam Radiation. Radiat Res 2018; 191:211-216. [PMID: 30526323 DOI: 10.1667/rr15155.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Increased understanding of radiation-induced secondary bystander effect (RISBE) is relevant to radiation therapy since it likely contributes to normal tissue injury and tumor recurrence, subsequently resulting in treatment failure. In this work, we developed a simple method based on proton microbeam radiation and a transwell insert co-culture system to elucidate the RISBE between irradiated human lung cancer cells and nonirradiated human normal cells. A549 lung cancer cells received a single dose or fractionated doses of proton microbeam radiation to generate the primary bystander cells. These cells were then seeded on the top of the insert with secondary bystander WI-38 normal cells growing underneath in the presence or absence of gap junction intercellular communication (GJIC) inhibitor, 18-α-glycyrrhetnic acid (AGA). Cells were co-cultured before harvesting and assayed for micronuclei formation. The results of this work showed that fractionated doses of protons caused less DNA damage in the secondary bystander WI-38 cells compared to a single radiation dose, where the means differ by 20%. However, the damaging effect in the secondary bystander normal cells could be eliminated when treated with AGA. This novel work reflects our effort to demonstrate that GJIC plays a major role in the RISBE generated from the primary bystander cancer cells.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- a Division of Radiation Oncology, Department of Radiology.,c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Cuihua Liu
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Alisa Kobayashi
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Tengku Ahbrizal Farizal Tengku Ahmad
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan.,d Division of Agrotechnology and Biosciences, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Malaysia
| | - Masakazu Oikawa
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Nahathai Dukaew
- b Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand.,c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Jun Wang
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan.,e Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Ariyaphong Wongnoppavichb
- b Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand.,c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| | - Teruaki Konishic
- c SPICE-BIO Research Core, National Institute of Radiological Sciences International Open Laboratory, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba, 263-8555 Japan
| |
Collapse
|
29
|
Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy. J Biomed Phys Eng 2018; 8:435-446. [PMID: 30568933 PMCID: PMC6280111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cure different types of cancers. The most crucial aim of radiotherapy is to improve treatment efficiency by reducing early and late effects of exposure to clinical doses of radiation. Secondary cancer induction resulted from exposure to high doses of radiation during treatment can reduce the effectiveness of this modality for cancer treatment. The perception of carcinogenesis risk of bystander effects and factors involved in this phenomenon might help reduce secondary cancer incidence years after radiotherapy. Different modalities such as radiation LET, dose and dose rate, fractionation, types of tissue, gender of patients, etc. may be involved in carcinogenesis risk of bystander effects. Therefore, selecting an appropriate treatment modality may improve cost-effectiveness of radiation therapy as well as the quality of life in survived patients. In this review, we first focus on the carcinogenesis evidence of non-targeted effects in radiotherapy and then review physical and biological factors that may influence the risk of secondary cancer induced by this phenomenon.
Collapse
Affiliation(s)
- R. Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - A. Salajegheh
- Department of Radiology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Safari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - P. Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Rezaeyan
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. Amraee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - M. Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
30
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G Georgakilas
- 2 DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens , Athens, Greece
| | - Jean-Luc Ravanat
- 3 Univ. Grenoble Alpes , CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
31
|
Kobayashi A, Konishi T. Radiation quality effects alteration in COX-2 pathway to trigger radiation-induced bystander response in A549 lung carcinoma cells. JOURNAL OF RADIATION RESEARCH 2018; 59:754-759. [PMID: 30124879 PMCID: PMC6251420 DOI: 10.1093/jrr/rry065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/12/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to determine whether the radiation-induced bystander effect (RIBE) is affected by radiation quality. To mimic the different radiation qualities of the direct action (D)/indirect action (ID) ratio, A549 cells were exposed to X-rays, with either 100 mM of the radical scavenger, thio-urea (TU+), or null (TU-). Biological responses in irradiated and bystander cells were compared at equal lethal effects of a 6% survival dose, which was estimated from the survival curves to be 8 Gy and 5 Gy for TU+ and TU-, respectively. Cyclooxygenase-2 (COX-2) expression in TU- irradiated cells increased up to 8 h post-irradiation, before decreasing towards 24 h. The concentration of prostaglandin E2 (PGE2), a primary product of COX-2 and known as a secreted inducible factor in RIBE, increased over 3-fold compared with that in the control at 8 h post-irradiation. Conversely, COX-2 expression and PGE2 production of TU+ irradiated cells were drastically suppressed. These results show that the larger D/ID suppressed COX-2 expression and PGE2 production in irradiated cells. However, in contrast to the case in the irradiated cells, COX-2 expression was equally observed in the TU- and TU+ co-cultured bystander cells, which showed the highest expression levels at 24 h post-irradiation. Taken together, these findings demonstrate that radiation quality, such as the D/ID ratio, may be an important factor in the alteration of signalling pathways involved in RIBE.
Collapse
Affiliation(s)
- Alisa Kobayashi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, Japan
| | - Teruaki Konishi
- SPICE-BIO research core, International Open Laboratory, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inageku, Chiba, Japan
| |
Collapse
|
32
|
Peng V, Suchowerska N, Esteves ADS, Rogers L, Claridge Mackonis E, Toohey J, McKenzie DR. Models for the bystander effect in gradient radiation fields: Range and signalling type. J Theor Biol 2018; 455:16-25. [DOI: 10.1016/j.jtbi.2018.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/14/2018] [Accepted: 06/30/2018] [Indexed: 11/17/2022]
|
33
|
Lara GG, Andrade GF, Cipreste MF, da Silva WM, Gastelois PL, Gomes DA, de Miranda MC, de Almeida Macedo WA, Neves MJ, de Sousa EMB. Protection of normal cells from irradiation bystander effects by silica-flufenamic acid nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:130. [PMID: 30074096 DOI: 10.1007/s10856-018-6134-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The development of a myriad of nanoparticles types has opened new possibilities for the diagnostics and treatment of many diseases, especially for cancer. However, most of the researches done so far do not focus on the protection of normal cells surrounding a tumor from irradiation bystander effects that might lead to cancer recurrence. Gap-junctions are known to be involved in this process, which leads to genomic instability of neighboring normal cells, and flufenamic acid (FFA) is included in a new group of gap-junction blockers recently discovered. The present work explores the use of mesoporous silica nanoparticles MCM-41 functionalized with 3-Aminopropyltriethoxysilane (APTES) for anchoring the flufenamic acid for its prolonged and controlled release and protection from radiation bystander effects. MCM-41 and functionalized samples were structurally and chemically characterized with multiple techniques. The biocompatibility of all samples was tested in a live/dead assay performed in cultured MRC-5 and HeLa cells. HeLa cells cultured were exposed to 50 Gy of gamma-rays and the media transferred to fibroblast cells cultured separately. Our results show that MCM-41 and functionalized samples have high biocompatibility with MCR-5 and HeLa cells, and most importantly, the FFA delivered by these NPs was able to halt apoptosis, one of main bystander effects.
Collapse
Affiliation(s)
- Giovanna Gomes Lara
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, 31270-901, MG, Brazil
| | | | | | | | - Pedro Lana Gastelois
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, 31270-901, MG, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, Brazil
| | | | | | - Maria Jose Neves
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Belo Horizonte, 31270-901, MG, Brazil
| | | |
Collapse
|
34
|
Sokolov M, Neumann R. Changes in gene expression as one of the key mechanisms involved in radiation-induced bystander effect. Biomed Rep 2018; 9:99-111. [PMID: 30013775 PMCID: PMC6036822 DOI: 10.3892/br.2018.1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
The radiation-induced bystander effect (RIBE) refers to the manifestation of responses by non-targeted/non-hit cells or tissues situated in proximity to cells and tissues directly exposed to ionizing radiation (IR). The RIBE is elicited by agents and factors released by IR-hit cells. The growing body of data suggests that the underlying mechanisms of the RIBE are multifaceted depending both on the biological (characteristics of directly IR-exposed cells, bystander cells, intercellular milieu) and the physical (dose, rate and type of IR, time after exposure) factors/parameters. Although the exact identity of bystander signal(s) is yet to be identified, the published data indicate changes in gene expression for multiple types of RNA (mRNA, microRNA, mitochondrial RNA, long non-coding RNA, small nucleolar RNA) as being one of the major responses of cells and tissues in the context of the RIBE. Gene expression profiles demonstrate a high degree of variability between distinct bystander cell and tissue types. These alterations could independently, or in a signaling cascade, result in the manifestation of readily observable endpoints, including changes in viability and genomic instability. Here, the relevant publications on the gene candidates and signaling pathways involved in the RIBE are reviewed, and a framework for future studies, both in vitro and in vivo, on the genetic aspect of the RIBE is provided.
Collapse
Affiliation(s)
- Mykyta Sokolov
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Reis P, Lourenço J, Carvalho FP, Oliveira J, Malta M, Mendo S, Pereira R. RIBE at an inter-organismic level: A study on genotoxic effects in Daphnia magna exposed to waterborne uranium and a uranium mine effluent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:206-214. [PMID: 29554637 DOI: 10.1016/j.aquatox.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The induction of RIBE (Radiation Induced Bystander Effect) is a non-target effect of low radiation doses that has already been verified at an inter-organismic level in fish and small mammals. Although the theoretical impact in the field of environmental risk assessment (ERA) is possible, there is a gap of knowledge regarding this phenomenon in invertebrate groups and following environmentally relevant exposures. To understand if RIBE should be considered for ERA of radionuclide-rich wastewaters, we exposed Daphnia magna (<24 h and 5d old) to a 2% diluted uranium mine effluent for 48 h, and to a matching dose of waterborne uranium (55.3 μg L-1). Then the exposed organisms were placed (24 and 48 h) in a clean medium together with non-exposed neonates. The DNA damage observed for the non-exposed organisms was statistically significant after the 24 h cohabitation for both uranium (neonates p = 0.002; 5 d-old daphnids p = <0.001) and uranium mine effluent exposure (only for neonates p = 0.042). After 48 h cohabitation significant results were obtained only for uranium exposure (neonates p = 0.017; 5 d-old daphnids p = 0.013). Although there may be some variability associated to age and exposure duration, the significant DNA damage detected in non-exposed organisms clearly reveals the occurrence of RIBE in D. magna. The data obtained and here presented are a valuable contribution for the discussion about the relevance of RIBE for environmental risk assessment.
Collapse
Affiliation(s)
- P Reis
- Department of Biology & GreenUPorto, Faculty of Sciences of the University of Porto, Portugal
| | - J Lourenço
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteção e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066, Bobadela LRS, Portugal
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteção e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066, Bobadela LRS, Portugal
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteção e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066, Bobadela LRS, Portugal
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - R Pereira
- Department of Biology & GreenUPorto, Faculty of Sciences of the University of Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal.
| |
Collapse
|
36
|
Affiliation(s)
- Scott Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Munira Kadhim
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
37
|
Mothersill C, Rusin A, Fernandez-Palomo C, Seymour C. History of bystander effects research 1905-present; what is in a name? Int J Radiat Biol 2017; 94:696-707. [DOI: 10.1080/09553002.2017.1398436] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
38
|
Adrian G, Ceberg C, Carneiro A, Ekblad L. Rescue Effect Inherited in Colony Formation Assays Affects Radiation Response. Radiat Res 2017; 189:44-52. [PMID: 29136392 DOI: 10.1667/rr14842.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that nonirradiated cells can exhibit radiation damage (bystander effect), and recent findings have shown that nonirradiated cells may help protect irradiated cells (rescue effect). These findings call into question the traditional view of radiation response: cells cannot be envisioned as isolated units. Here, we investigated traditional colony formation assays to determine if they also comprise cellular communication affecting the radiation response, using colony formation assays with varying numbers of cells, modulated beam irradiation and media transfer. Our findings showed that surviving fraction gradually increased with increasing number of irradiated cells. Specifically, for DU-145 human prostate cancer cells, surviving fraction increased 1.9-to-4.1-fold after 5-12 Gy irradiation; and for MM576 human melanoma cells, surviving fraction increased 1.9-fold after 5 Gy irradiation. Furthermore, increased surviving fraction was evident after modulated beam irradiation, where irradiated cells could communicate with nonirradiated cells. Media from dense cell culture also increased surviving fraction. The results suggest that traditional colony formation assays comprise unavoidable cellular communication affecting radiation outcome and the shape of the survival curve. We also propose that the increased in-field surviving fraction after modulated beam irradiation is due to the same effect.
Collapse
Affiliation(s)
| | - Crister Ceberg
- b Medical Radiation Physics, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | | | | |
Collapse
|
39
|
Wang L, Peng Y, Peng J, Shao M, Ma L, Zhu Z, Zhong G, Xia Z, Huang H. Tramadol attenuates the sensitivity of glioblastoma to temozolomide through the suppression of Cx43‑mediated gap junction intercellular communication. Int J Oncol 2017; 52:295-304. [PMID: 29115581 DOI: 10.3892/ijo.2017.4188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 11/06/2022] Open
Abstract
Analgesics and antineoplastic drugs are often used concurrently for cancer patients. Our previous study reported that gap junctions composed of connexin32 (Cx32) was implicated in the effect of analgesics on cisplatin cytotoxicity. However, the effect of analgesic on the most widely expressed connexin (Cx), connexin43 (Cx43), and whether such effect mediates the influence on chemotherapeutic efficiency remain unknown. By manipulation of Cx43 expression or gap junction function, we found that there were gap junction-dependent and independent effect of Cx43 on temozolomide (TMZ) sensitivity in U87 glioblastoma cells. Studies on survival and apoptosis showed widely used analgesic tramadol significantly reduced TMZ-induced cytotoxicity in control and negative control cells but not shCx43-transfected cells. Proliferation assay demonstrated tramadol suppressed TMZ-induced cytotoxicity only on high density (with gap junction formation) but not on low density (without gap junction formation). Tramadol inhibited dye-coupling through gap junctions between U87 cells. Tramadol treatment for 72 h did not alter Cx43 expression, but decreased Cx43 phosphorylation accompanied with reduced p-ERK and p-JNK. Our results indicated that long-term treatment with tramadol reduced TMZ cytotoxicity in U87 cells by suppressing Cx43-composed gap junctions, suggesting identification and usage of antinociceptive drugs which do not downregulate connexin activity should have beneficial therapeutic consequences.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Min Shao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Li Ma
- Department of Cardiovascular Internal Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Zhuoli Zhu
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Guocheng Zhong
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Zhengyuan Xia
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Huansen Huang
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
40
|
Autsavapromporn N, Liu C, Konishi T. Impact of Co-Culturing with Fractionated Carbon-Ion-Irradiated Cancer Cells on Bystander Normal Cells and Their Progeny. Radiat Res 2017; 188:335-341. [DOI: 10.1667/rr14773.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Cuihua Liu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, 263-8555, Japan
| | - Teruaki Konishi
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, 263-8555, Japan
| |
Collapse
|
41
|
Peng V, Suchowerska N, Rogers L, Claridge Mackonis E, Oakes S, McKenzie DR. Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncol 2017; 56:1048-1059. [PMID: 28303745 DOI: 10.1080/0284186x.2017.1299939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In microbeam radiotherapy (MRT), parallel arrays of high-intensity synchrotron x-ray beams achieve normal tissue sparing without compromising tumor control. Grid-therapy using clinical linacs has spatial modulation on a larger scale and achieves promising results for palliative treatments of bulky tumors. The availability of high definition multileaf collimators (HDMLCs) with 2.5 mm leaves provides an opportunity for grid-therapy to more closely approach MRT. However, challenges to the wider implementation of grid-therapy remain because spatial modulation of the target volume runs counter to current radiotherapy practice and mechanisms for the beneficial effects of MRT are not fully understood. Without more knowledge of cell dose responses, a quantitative basis for planning treatments is difficult. The aim of this study is to determine if therapeutic benefits of MRT can be achieved using a linac with HDMLCs and if so, to develop a predictive model to support treatment planning. MATERIAL AND METHODS HD120-MLCs of a Varian Novalis TXTM were used to generate grid patterns of 2.5 and 5.0 mm spacing, which were characterized dosimetrically using GafchromicTM EBT3 film. Clonogenic survival of normal (HUVEC) and cancer (NCI-H460, HCC-1954) cell lines following irradiation under the grid and open fields using a 6 MV photon beam were compared in-vitro for the same average dose. RESULTS AND CONCLUSIONS Relative to an open field, survival of normal cells in a 2.5 mm striped field was the same, while the survival of both cancer cell lines was significantly lower. A mathematical model was developed to incorporate dose gradients of the spatial modulation into the standard linear quadratic model. Our new bystander extended LQ model assumes spatial gradients drive the diffusion of soluble factors that influence survival through bystander effects, successfully predicting the experimental results that show an increased therapeutic ratio. Our results challenge conventional radiotherapy practice and propose that additional gain can be realized by prescribing spatially modulated treatments to harness the bystander effect.
Collapse
Affiliation(s)
- Valery Peng
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Natalka Suchowerska
- School of Physics, University of Sydney, Camperdown, NSW, Australia
- Department of Radiation Oncology, Chris O’Brien Lifehouse, VectorLAB, Camperdown, NSW, Australia
| | - Linda Rogers
- School of Physics, University of Sydney, Camperdown, NSW, Australia
- Department of Radiation Oncology, Chris O’Brien Lifehouse, VectorLAB, Camperdown, NSW, Australia
| | | | - Samantha Oakes
- The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - David R. McKenzie
- School of Physics, University of Sydney, Camperdown, NSW, Australia
- Department of Radiation Oncology, Chris O’Brien Lifehouse, VectorLAB, Camperdown, NSW, Australia
| |
Collapse
|
42
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
43
|
Enhanced DNA double-strand break repair of microbeam targeted A549 lung carcinoma cells by adjacent WI38 normal lung fibroblast cells via bi-directional signaling. Mutat Res 2017; 803-805:1-8. [PMID: 28689138 DOI: 10.1016/j.mrfmmm.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023]
Abstract
Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi-directional signaling had extended a profound influence on cellular sensitivity to radiation as well as the sensitivity to RIBE.
Collapse
|
44
|
de Toledo SM, Buonanno M, Harris AL, Azzam EI. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. Int J Radiat Biol 2017; 93:1182-1194. [DOI: 10.1080/09553002.2017.1334980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sonia M. de Toledo
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Manuela Buonanno
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Andrew L. Harris
- Pharmacology and Physiology and Neuroscience, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Edouard I. Azzam
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
- Pharmacology and Physiology and Neuroscience, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| |
Collapse
|
45
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
46
|
Matsuya Y, Tsujiguchi T, Yamaguchi M, Kimura T, Mori R, Yamada R, Saga R, Fujishima Y, Date H. Educational Activity for the Radiation Emergency System in the Northern Part of Japan: Meeting Report on "The 3rd Educational Symposium on Radiation and Health (ESRAH) by Young Scientists in 2016". Radiat Res 2017; 187:641-646. [PMID: 28418815 DOI: 10.1667/rr14756.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the northern part of Japan, close cooperation is essential in preparing for any possible emergency response to radiation accidents because several facilities, such as the Low-Level Radioactive Waste Disposal Facility, the MOX Fuel Fabrication Plant and the Vitrified Waste Storage Center, exist in Rokkasho Village (Aomori Prefecture). After the accident at Fukushima Daiichi Nuclear Power Plant in 2011, special attention should be given to the relationship between radiation and human health, as well as establishing a system for managing with a radiation emergency. In the area of Hokkaido and Aomori prefectures in Japan, since 2008 an exchange meeting between Hokkaido University and Hirosaki University has been held every year to have opportunities to discuss radiation effects on human health and to collect the latest news on monitoring environmental radiation. This meeting was elevated to an international meeting in 2014 titled "Educational Symposium on Radiation and Health (ESRAH) by Young Scientists". The 3rd ESRAH meeting took place in 2016, with the theme "Investigating Radiation Impact on the Environmental and Health". Here we report the meeting findings on the continuing educational efforts after the Fukushima incident, what was accomplished in terms of building a community educational approaches, and future goals.
Collapse
Affiliation(s)
- Yusuke Matsuya
- a Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Takakiyo Tsujiguchi
- b Department of Radiological Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Masaru Yamaguchi
- b Department of Radiological Life Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Takaaki Kimura
- a Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Ryosuke Mori
- a Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Ryota Yamada
- a Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Ryo Saga
- c Graduate School of Health Sciences, Department of Radiation Science, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Yohei Fujishima
- d Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | - Hiroyuki Date
- e Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
47
|
Kaminaga K, Noguchi M, Narita A, Hattori Y, Usami N, Yokoya A. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam. Int J Radiat Biol 2016; 92:739-744. [PMID: 27537347 DOI: 10.1080/09553002.2016.1206237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. MATERIALS AND METHODS Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. RESULTS The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. CONCLUSIONS We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- a Graduate School of Science and Engineering, Ibaraki University , Mito , Ibaraki , Japan.,b Quantum Beam Science Center, Japan Atomic Energy Agency , Tokai , Ibaraki , Japan
| | - Miho Noguchi
- b Quantum Beam Science Center, Japan Atomic Energy Agency , Tokai , Ibaraki , Japan
| | - Ayumi Narita
- c National Institute of Advaced Industrial Science and Technology, Central2, Umezono , Tsukuba , Ibaraki , Japan
| | - Yuya Hattori
- b Quantum Beam Science Center, Japan Atomic Energy Agency , Tokai , Ibaraki , Japan
| | - Noriko Usami
- d Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization , Oho, Tsukuba , Ibaraki , Japan
| | - Akinari Yokoya
- a Graduate School of Science and Engineering, Ibaraki University , Mito , Ibaraki , Japan.,b Quantum Beam Science Center, Japan Atomic Energy Agency , Tokai , Ibaraki , Japan
| |
Collapse
|
48
|
Zhang D, Zhou T, He F, Rong Y, Lee SH, Wu S, Zuo L. Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells. Oncotarget 2016; 7:41622-41636. [PMID: 27223435 PMCID: PMC5173083 DOI: 10.18632/oncotarget.9517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Ionizing radiation (IR) in cancer radiotherapy can induce damage to neighboring cells via non-targeted effects by irradiated cells. These so-called bystander effects remain an area of interest as it may provide enhanced efficacy in killing carcinomas with minimal radiation. It is well known that reactive oxygen species (ROS) are ubiquitous among most biological activities. However, the role of ROS in bystander effects has not been thoroughly elucidated. We hypothesized that gradient irradiation (GI) has enhanced therapeutic effects via the ROS-mediated bystander pathways as compared to uniform irradiation (UI). We evaluated ROS generation, viability, and apoptosis in breast cancer cells (MCF-7) exposed to UI (5 Gy) or GI (8-2 Gy) in radiation fields at 2, 24 and 48 h after IR. We found that extracellular ROS release induced by GI was higher than that by UI at both 24 h (p < 0.001) and 48 h (p < 0.001). More apoptosis and less viability were observed in GI when compared to UI at either 24 h or 48 h after irradiation. The mean effective doses (ED) of GI were ~130% (24 h) and ~48% (48 h) higher than that of UI, respectively. Our results suggest that GI is superior to UI regarding redox mechanisms, ED, and toxic dosage to surrounding tissues.
Collapse
Affiliation(s)
- Dongqing Zhang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Urology Nevada/Northern Nevada Radiation Oncology, Reno, NV 89521, USA
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Feng He
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Yi Rong
- Department of Radiation Oncology, The James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shin Hee Lee
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry and Biochemistry, Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Smyth LML, Senthi S, Crosbie JC, Rogers PAW. The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol 2016; 92:302-11. [DOI: 10.3109/09553002.2016.1154217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lloyd M. L. Smyth
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
- Epworth Radiation Oncology, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Sashendra Senthi
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
| | - Jeffrey C. Crosbie
- William Buckland Radiotherapy Centre, Alfred Hospital, Melbourne, Victoria, Australia
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter A. W. Rogers
- University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Ye F, Ning J, Liu X, Jin X, Wang T, Li Q. The influence of non-DNA-targeted effects on carbon ion-induced low-dose hyper-radiosensitivity in MRC-5 cells. JOURNAL OF RADIATION RESEARCH 2016; 57:103-109. [PMID: 26559335 PMCID: PMC4795944 DOI: 10.1093/jrr/rrv072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation-induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion-induced LDHRS.
Collapse
Affiliation(s)
- Fei Ye
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Department of Modern Physics, Lanzhou University, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Ning
- Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Xinguo Liu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaodong Jin
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tieshan Wang
- Department of Modern Physics, Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|