1
|
Glowa C, Bendinger AL, Euler-Lange R, Peschke P, Brons S, Debus J, Karger CP. Irradiation with Carbon Ions Effectively Counteracts Hypoxia-related Radioresistance in a Rat Prostate Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:875-883. [PMID: 38750905 DOI: 10.1016/j.ijrobp.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiation therapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint "local tumor control within 300 days" and compared with previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to that under oxic conditions and also to quantify the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS Compared with those under oxic conditions, TCD50 values under hypoxic conditions increased by a factor of 1.53 ± 0.08 for photons and by a factor of 1.28 ± 0.06 for carbon ions (oxygen enhancement ratio). Compared with those for photons, TCD50 values for carbon ions decreased by a factor of 2.08 ± 0.13 under oxic conditions and by a factor of 2.49 ± 0.08 under hypoxic conditions (relative biological effectiveness). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS The reduced oxygen enhancement ratio of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the effect of intertumor heterogeneity on the radiation response. Therefore, carbon ions may confer a significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiation therapy.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina L Bendinger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Rosemarie Euler-Lange
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Department of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
2
|
Mietelska M, Pietrzak M, Bancer A, Ruciński A, Szefliński Z, Brzozowska B. Ionization Detail Parameters for DNA Damage Evaluation in Charged Particle Radiotherapy: Simulation Study Based on Cell Survival Database. Int J Mol Sci 2024; 25:5094. [PMID: 38791135 PMCID: PMC11121214 DOI: 10.3390/ijms25105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Details of excitation and ionization acts hide a description of the biological effects of charged particle traversal through living tissue. Nanodosimetry enables the introduction of novel quantities that characterize and quantify the particle track structure while also serving as a foundation for assessing biological effects based on this quantification. This presents an opportunity to enhance the planning of charged particle radiotherapy by taking into account the ionization detail. This work uses Monte Carlo simulations with Geant4-DNA code for a wide variety of charged particles and their radiation qualities to analyze the distribution of ionization cluster sizes within nanometer-scale volumes, similar to DNA diameter. By correlating these results with biological parameters extracted from the PIDE database for the V79 cell line, a novel parameter R2 based on ionization details is proposed for the evaluation of radiation quality in terms of biological consequences, i.e., radiobiological cross section for inactivation. By incorporating the probability p of sub-lethal damage caused by a single ionization, we address limitations associated with the usually proposed nanodosimetric parameter Fk for characterizing the biological effects of radiation. We show that the new parameter R2 correlates well with radiobiological data and can be used to predict biological outcomes.
Collapse
Affiliation(s)
- Monika Mietelska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland;
- Radiological Metrology and Biomedical Physics Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, 05-400 Świerk, Poland; (M.P.); (A.B.)
| | - Marcin Pietrzak
- Radiological Metrology and Biomedical Physics Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, 05-400 Świerk, Poland; (M.P.); (A.B.)
- Laboratory of Translational Imaging in Oncology, Inserm, Institut Curie, Université Paris Saclay, 91401 Orsay, France
| | - Aleksandr Bancer
- Radiological Metrology and Biomedical Physics Division, Nuclear Facilities Operations Department, National Centre for Nuclear Research, 05-400 Świerk, Poland; (M.P.); (A.B.)
| | | | | | - Beata Brzozowska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland;
| |
Collapse
|
3
|
Szymonowicz K, Krysztofiak A, van der Linden J, Kern A, Deycmar S, Oeck S, Squire A, Koska B, Hlouschek J, Vüllings M, Neander C, Siveke JT, Matschke J, Pruschy M, Timmermann B, Jendrossek V. Proton Irradiation Increases the Necessity for Homologous Recombination Repair Along with the Indispensability of Non-Homologous End Joining. Cells 2020; 9:E889. [PMID: 32260562 PMCID: PMC7226794 DOI: 10.3390/cells9040889] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Adam Krysztofiak
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Jansje van der Linden
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Ajvar Kern
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Simon Deycmar
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, Imaging Center Essen, University Hospital Essen, 45122 Essen, Germany;
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Julian Hlouschek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
| | - Christian Neander
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Jens T. Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany; (C.N.); (J.T.S.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| | - Martin Pruschy
- Department of Radiation Oncology, Laboratory for Applied Radiobiology, University Hospital Zurich, Zurich, Switzerland; (S.D.); (M.P.)
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (A.K.); (B.K.); (M.V.); (B.T.)
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- Department of Particle Therapy, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (K.S.); (A.K.); (J.v.d.L.); (S.O.); (J.H.); (J.M.)
| |
Collapse
|
4
|
Qin N, Shen C, Tsai MY, Pinto M, Tian Z, Dedes G, Pompos A, Jiang SB, Parodi K, Jia X. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit. Int J Radiat Oncol Biol Phys 2018; 100:235-243. [PMID: 29079118 DOI: 10.1016/j.ijrobp.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 01/29/2023]
Abstract
PURPOSE One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. METHODS AND MATERIALS The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. RESULTS Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. CONCLUSIONS We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame.
Collapse
Affiliation(s)
- Nan Qin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chenyang Shen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Min-Yu Tsai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Marco Pinto
- Department of Experimental Physics-Medical Physics, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Zhen Tian
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Georgios Dedes
- Department of Experimental Physics-Medical Physics, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steve B Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Katia Parodi
- Department of Experimental Physics-Medical Physics, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Xun Jia
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
5
|
Qin N, Pinto M, Tian Z, Dedes G, Pompos A, Jiang SB, Parodi K, Jia X. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy. Phys Med Biol 2017; 62:3682-3699. [PMID: 28140352 PMCID: PMC5730973 DOI: 10.1088/1361-6560/aa5d43] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.
Collapse
Affiliation(s)
- Nan Qin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Multiscale approach predictions for biological outcomes in ion-beam cancer therapy. Sci Rep 2016; 6:27654. [PMID: 27297618 PMCID: PMC4906349 DOI: 10.1038/srep27654] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 11/25/2022] Open
Abstract
Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.
Collapse
|
7
|
Glowa C, Karger CP, Brons S, Zhao D, Mason RP, Huber PE, Debus J, Peschke P. Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors. Cancer Lett 2016; 378:97-103. [PMID: 27224892 DOI: 10.1016/j.canlet.2016.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To quantitatively study the impact of intrinsic tumor characteristics and microenvironmental factors on local tumor control after irradiation with carbon ((12)C-) ions and photons in an experimental prostate tumor model. MATERIAL AND METHODS Three sublines of a syngeneic rat prostate tumor (R3327) differing in grading (highly (-H) moderately (-HI) or anaplastic (-AT1)) were irradiated with increasing single doses of either (12)C-ions or 6 MV photons in Copenhagen rats. Primary endpoint was local tumor control within 300 days. The relative biological effectiveness (RBE) of (12)C-ions was calculated from the dose at 50% tumor control probability (TCD50) of photons and (12)C-ions and was correlated with histological, physiological and genetic tumor parameters. RESULTS Experimental findings demonstrated that (i) TCD50-values between the three tumor sublines differed less for (12)C-ions (23.6-32.9 Gy) than for photons (38.2-75.7 Gy), (ii) the slope of the dose-response curve for each tumor line was steeper for (12)C-ions than for photons, and (iii) the RBE increased with tumor grading from 1.62 ± 0.11 (H) to 2.08 ± 0.13 (HI) to 2.30 ± 0.08 (AT1). CONCLUSION The response to (12)C-ions is less dependent on resistance factors as well as on heterogeneity between and within tumor sublines as compared to photons. A clear correlation between decreasing differentiation status and increasing RBE was found. (12)C-ions may therefore be a therapeutic option especially in patients with undifferentiated prostate tumors, expressing high resistance against photons.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Dawen Zhao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter E Huber
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter Peschke
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Walenta S, Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models. Front Oncol 2016; 6:30. [PMID: 26942125 PMCID: PMC4766872 DOI: 10.3389/fonc.2016.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 01/31/2023] Open
Abstract
This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during 12C+6 irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a twofold higher number of foci per nucleus. However, proinflammatory signs were similar for both treatment modalities, e.g., the activation of NFκB and the release of IL6 and IL8. The presence of peripheral blood mononuclear cell increased the radiation-induced release of the proinflammatory cytokines by factors of 2–3. Carbon ions are part of the cosmic radiation. Long-term exposure to such particles during extended space flights, as planned by international space agencies, may thus impose a medical and safety risk on the astronauts by a potential induction of mucositis. In summary, particle irradiation is superior to gamma-rays due to a higher radiobiological effectiveness, a reduced hypoxia-induced radioresistance, a multicellular radiosensitization, and the absence of a radiation-induced cell motility. However, the potential of inducing mucositis is similar for both radiation types.
Collapse
Affiliation(s)
- Stefan Walenta
- Institute of Pathophysiology, University Medical Center, University of Mainz , Mainz , Germany
| | | |
Collapse
|
9
|
Hadronthérapie : quelle place et quelles perspectives en 2015 ? Cancer Radiother 2015; 19:519-25. [DOI: 10.1016/j.canrad.2015.07.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022]
|
10
|
Fontana AO, Augsburger MA, Grosse N, Guckenberger M, Lomax AJ, Sartori AA, Pruschy MN. Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiother Oncol 2015; 116:374-80. [DOI: 10.1016/j.radonc.2015.08.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 01/23/2023]
|
11
|
Kempf H, Bleicher M, Meyer-Hermann M. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy. PLoS One 2015; 10:e0133357. [PMID: 26273841 PMCID: PMC4537194 DOI: 10.1371/journal.pone.0133357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/26/2015] [Indexed: 12/27/2022] Open
Abstract
Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment.
Collapse
Affiliation(s)
- Harald Kempf
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Marcus Bleicher
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
12
|
Hirayama R, Uzawa A, Obara M, Takase N, Koda K, Ozaki M, Noguchi M, Matsumoto Y, Li H, Yamashita K, Koike S, Ando K, Shirai T, Matsufuji N, Furusawa Y. Determination of the relative biological effectiveness and oxygen enhancement ratio for micronuclei formation using high-LET radiation in solid tumor cells: An in vitro and in vivo study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:41-7. [PMID: 26520371 DOI: 10.1016/j.mrgentox.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
We determined the relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of micronuclei (MN) formation in clamped (hypoxic) and non-clamped (normoxic) solid tumors in mice legs following exposure to X-rays and heavy ions. Single-cell suspensions (aerobic) of non-irradiated tumors were prepared in parallel and used directly to determine the radiation response for aerobic cells. Squamous cell carcinoma (SCCVII) cells were transplanted into the right hind legs of syngeneic C3H/He male mice. Irradiation doses with either X-rays or heavy ions at a dose-averaged LET (linear energy transfer) of 14-192keV/μm were delivered to 5-mm diameter tumors and aerobic single-cells in sample-tubes. After irradiation, the tumors were excised and trypsinized to observe MN in single-cells. The single-cell suspensions were used for MN formation assays. The RBE values increased with increasing LET. The maximum RBE values for the three different oxygen conditions; hypoxic tumor, normoxic tumor, and aerobic cells, were 8.18, 5.30, and 3.76 at an LET of 192keV/μm, respectively. After X-irradiation, the OERh/n values (hypoxic tumor/normoxic tumor) were lower than the OERh/a (hypoxic tumor/aerobic cells), and were 1.73 and 2.58, respectively. We found that the OER for the in vivo studies were smaller in comparison to that for the in vitro studies. Both of the OER values at 192keV/μm were small in comparison to those of the X-ray irradiated samples. The OERh/n and OERh/a values at 192keV/μm were 1.12 and 1.19, respectively. Our results suggest that high LET radiation has a large biological effect even if a solid tumor includes substantial numbers of hypoxic cells. To conclude, we found that the RBE values under each oxygen state for non-MN fraction increased with increasing LET and that the OER values for both tumors in vivo and cells in vitro decreased with increasing LET.
Collapse
Affiliation(s)
- Ryoichi Hirayama
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.
| | - Akiko Uzawa
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Maki Obara
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Nobuhiro Takase
- School of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Kana Koda
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Masakuni Ozaki
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Miho Noguchi
- Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Yoshitaka Matsumoto
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Huizi Li
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Kei Yamashita
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Sachiko Koike
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Koichi Ando
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi-shi, Gunma 371-8511, Japan
| | - Toshiyuki Shirai
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Naruhiro Matsufuji
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yoshiya Furusawa
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
13
|
Grosse N, Fontana AO, Hug EB, Lomax A, Coray A, Augsburger M, Paganetti H, Sartori AA, Pruschy M. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation. Int J Radiat Oncol Biol Phys 2014; 88:175-81. [DOI: 10.1016/j.ijrobp.2013.09.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022]
|
14
|
Evaluation of SCCVII tumor cell survival in clamped and non-clamped solid tumors exposed to carbon-ion beams in comparison to X-rays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:146-51. [DOI: 10.1016/j.mrgentox.2013.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/22/2022]
|
15
|
Antonovic L, Brahme A, Furusawa Y, Toma-Dasu I. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions. JOURNAL OF RADIATION RESEARCH 2013; 54:18-26. [PMID: 22915783 PMCID: PMC3534272 DOI: 10.1093/jrr/rrs070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 05/24/2023]
Abstract
Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.
Collapse
Affiliation(s)
- L. Antonovic
- Medical Radiation Physics, Stockholm University and Karolinska Institutet, 171 76 Stockholm, Sweden
| | - A. Brahme
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
- Next Generation Medical Physics Research Program and International Open Laboratories, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Y. Furusawa
- Next Generation Medical Physics Research Program and International Open Laboratories, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - I. Toma-Dasu
- Medical Radiation Physics, Stockholm University and Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
16
|
Wenzl T, Wilkens JJ. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Phys Med Biol 2011; 56:3251-68. [PMID: 21540489 DOI: 10.1088/0031-9155/56/11/006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The poor treatment prognosis for tumours with oxygen-deficient areas is usually attributed to the increased radioresistance of hypoxic cells. It can be expressed by the oxygen enhancement ratio (OER), which decreases with increasing linear energy transfer (LET) suggesting a potential clinical advantage of high-LET radiotherapy with heavy ion beams compared to low-LET photon or proton irradiation. The aim of this work is to review the experimental cell survival data from the literature and, based on them, to develop a simple OER model to estimate the clinical impact of OER variations. For this purpose, the standard linear-quadratic model and the Alper-Howard-Flanders model are used. According to our calculations for a carbon ion spread-out Bragg peak at clinically relevant intermediate oxygen levels (0.5-20 mmHg), the advantage of carbon ions might be relatively moderate, with OER values about 1%-15% smaller than for protons. Furthermore, the variations of OER with LET are much smaller in vivo than in vitro due to different oxygen partial pressures used in cell experiments or measured inside tumours. The proposed OER model is a simple tool to quantify the oxygen effect in a practical way and provides the possibility to do hypoxia-based biological optimization in treatment planning.
Collapse
Affiliation(s)
- Tatiana Wenzl
- Department of Radiation Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany.
| | | |
Collapse
|
17
|
Peschke P, Karger CP, Scholz M, Debus J, Huber PE. Relative biological effectiveness of carbon ions for local tumor control of a radioresistant prostate carcinoma in the rat. Int J Radiat Oncol Biol Phys 2010; 79:239-46. [PMID: 20934276 DOI: 10.1016/j.ijrobp.2010.07.1976] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/18/2010] [Accepted: 07/19/2010] [Indexed: 11/27/2022]
Abstract
PURPOSE To study the relative biological effectiveness (RBE) of carbon ion beams relative to X-rays for local tumor control in a syngeneic rat prostate tumor (Dunning subline R3327-AT1). METHODS AND MATERIALS A total of 198 animals with tumors in the distal thigh were treated with increasing single and split doses of either (12)C ions or photons using a 20-mm spread-out Bragg peak. Endpoints of the study were local control (no tumor recurrence within 300 days) and volumetric changes after irradiation. The resulting values for D(50) (dose at 50% tumor control probability) were used to determine RBE values. RESULTS The D(50) values for single doses were 32.9 ± 0.9 Gy for (12)C ions and 75.7 ± 1.6 Gy for photons. The respective values for split doses were 38.0 ± 2.3 Gy and 90.6 ± 2.3 Gy. The corresponding RBE values were 2.30 ± 0.08 for single and 2.38 ± 0.16 for split doses. The most prominent side effects were dry and moist desquamation of the skin, which disappeared within weeks. CONCLUSION The study confirmed the effectiveness of carbon ion therapy for severely radioresistant tumors. For 1- and 2-fraction photon and (12)C ion radiation, we have established individual D(50) values for local tumor control as well as related RBE values.
Collapse
Affiliation(s)
- Peter Peschke
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Hirayama R, Matsumoto Y, Kase Y, Noguchi M, Ando K, Ito A, Okayasu R, Furusawa Y. Radioprotection by DMSO in nitrogen-saturated mammalian cells exposed to helium ion beams. Radiat Phys Chem Oxf Engl 1993 2009. [DOI: 10.1016/j.radphyschem.2009.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Topsch J, Scholz M, Mueller-Klieser W. Radiobiological characterization of human tumor cell multilayers after conventional and particle irradiation. Radiat Res 2007; 167:645-54. [PMID: 17523847 DOI: 10.1667/rr0775.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 01/11/2007] [Indexed: 11/03/2022]
Abstract
The goal of this study was to establish planar multilayers from human tumor cells (WiDr and SiHa) as a model for irradiation of solid tumors. In addition to using conventional X rays (250 kV) as a reference standard, multilayers were tested for their suitability in cell survival studies with heavy-ion irradiation ((12)C(6+)) in the plateau and the extended Bragg peak with a scanned ion beam. Multilayers of both cell lines showed decreased survival compared to the corresponding monolayers after both X and heavy-ion irradiation. This multicellular sensitization effect is in contrast to the multicellular resistance or contact effect commonly described in the literature. Flow cytometry measurements showed an arrest of irradiated SiHa cells in G(2)/M phase. In contrast to the transient arrest of the monolayers, the multilayers stayed in a prolonged arrest. After Bragg-peak irradiation of monolayers, the arrest time was increased by 12-24 h, and more cells were arrested than with X rays. For multilayers, there were no differences between G(2) arrest after X rays and heavy ions for the entire observation period.
Collapse
Affiliation(s)
- J Topsch
- Department of Biophysics, Gesellschaft für Schwerionenforschung, Darmstadt, Germany
| | | | | |
Collapse
|
20
|
Sprong D, Janssen HL, Vens C, Begg AC. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys 2006; 64:562-72. [PMID: 16343804 DOI: 10.1016/j.ijrobp.2005.09.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 09/28/2005] [Accepted: 09/28/2005] [Indexed: 01/24/2023]
Abstract
PURPOSE To determine the role of DNA repair in hypoxic radioresistance. METHODS AND MATERIALS Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. RESULTS All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. CONCLUSION Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity.
Collapse
Affiliation(s)
- Debbie Sprong
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|