2
|
Hirose K, Monzen S, Yoshino H, Sato H, Aoki M, Hatayama Y, Kawaguchi H, Sato M, Narita Y, TakaI Y, Kashiwakura I. Effects of radiation on the maturation of megakaryocytes. JOURNAL OF RADIATION RESEARCH 2013; 54:447-452. [PMID: 23297317 PMCID: PMC3650752 DOI: 10.1093/jrr/rrs127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Megakaryocytes are generated by the differentiation of megakaryocytic progenitors; however, little information has been reported regarding how ionizing radiation affects the differentiation pathway and cellular responses. Human leukemia K562 cells have been used as a model to study megakaryocytic differentiation. In the present study, to investigate the effects of radiation on phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation of K562 cells, the cellular processes responsible for the expression of CD41 antigen (GPIIb/IIIa), which is reported to be expressed early in megakaryocyte maturation, were analyzed. The expression of CD41 antigens was significantly increased 72 h after treatment with both 4 Gy X-irradiation and PMA. In this fraction, two populations, CD41(low) and CD41(high) cells, were detected by flow cytometry. The CD41(high) cells sustained intracellular ROS at the initial level for up to 72 h, but CD41(low) cells had reduced ROS by 48 h. The maximum suppressive effect on CD41 expression was observed when N-acetyl cysteine, which is known to act as a ROS scavenger, was administered 48 h after PMA stimulation. When K562 cells were pretreated with mitogen-activated protein kinase (MAPK) pathway inhibitors, an ERK1/2 inhibitor and a p38 MAPK inhibitor, followed by X-irradiation and PMA stimulation, the reactivity profiles of both inhibitors showed the involvement of MAPK pathway. There is a possibility that the K562 cell population contains at least two types of radiosensitive megakaryocytic progenitors with respect to ROS production mechanisms, and intracellular ROS levels determine the extent of CD41 expression.
Collapse
Affiliation(s)
- Katsumi Hirose
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Satoru Monzen
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Hironori Yoshino
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Haruka Sato
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiko Aoki
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yoshiomi Hatayama
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hideo Kawaguchi
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Mariko Sato
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yuichiro Narita
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Yoshihiro TakaI
- Department of Radiology and Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Ikuo Kashiwakura
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
3
|
DiCarlo AL, Poncz M, Cassatt DR, Shah JR, Czarniecki CW, Maidment BW. Medical countermeasures for platelet regeneration after radiation exposure. Report of a workshop and guided discussion sponsored by the National Institute of Allergy and Infectious Diseases, Bethesda, MD, March 22–23, 2010. Radiat Res 2011; 176:e0001-15. [PMID: 21545291 DOI: 10.1667/rrol01.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The events of September 11, 2001 and their aftermath increased awareness of the need to develop medical countermeasures (MCMs) to treat potential health consequences of a radiation accident or deliberate attack. The medical effects of lethal exposures to ionizing radiation have been well described and affect multiple organ systems. To date, much of the research to develop treatments for mitigation of radiation-induced hematopoietic damage has focused on amelioration of radiation-induced neutropenia, which has long been considered to be the primary factor in determining survival after an unintentional radiation exposure. Consistent with historical data, recent studies have highlighted the role that radiation-induced thrombocytopenia plays in radiation mortality, yet development of MCMs to mitigate radiation damage to the megakaryocyte lineage has lagged behind anti-neutropenia approaches. To address this gap and to foster research in the area of platelet regeneration after radiation exposure, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored a workshop on March 22-23, 2010 to encourage collaborations between NIAID program awardees and companies developing pro-platelet approaches. NIAID also organized an informal, open discussion between academic investigators, product development contractors, and representatives from the U.S. Food and Drug Administration (FDA) and other relevant government agencies about drug development toward FDA licensure of products for an acute radiation syndrome indication. Specific emphasis was placed on the challenges of product licensure for radiation/nuclear MCMs using current FDA regulations (21 CFR Parts 314 and 601) and on the importance of animal efficacy model development, design of pivotal protocols, and standardization of irradiation and animal supportive care.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
4
|
He XL, Yin HL, Wu J, Zhang K, Liu Y, Yuan T, Rao HL, Li L, Yang G, Zhang XM. A multiple-dose pharmacokinetics of polyethylene glycol recombinant human interleukin-6 (PEG-rhIL-6) in rats. J Zhejiang Univ Sci B 2011; 12:32-9. [PMID: 21194184 PMCID: PMC3017414 DOI: 10.1631/jzus.b1000085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/29/2010] [Indexed: 01/24/2023]
Abstract
Radiation therapy has been widely applied in cancer treatment. However, it often causes thrombocytopenia (deficiency of white blood cells) as an adverse effect. Recombinant human interleukin-6 (rhIL-6) has been found to be a very effective way against this thrombocytopenia, but IL-6 has low stability in blood, which reduces its efficacy. To increases the stability and half-life of rhIL-6, it was modified by polyethylene glycol (PEG). The pharmacokinetics and the tissue distribution of PEG-rhIL-6 labeled with (125)I were examined after subcutaneous injection in rats. The pharmacokinetic pattern of PEG-rhIL-6 was defined with linear-kinetics, and we fitted a one-compartment model with half-lives of 10.44-11.37 h (absorption, t(1/2Ka)) and 19.77-21.53 h (elimination, t(1/2Ke)), and peak concentrations at 20.51-21.96 h (t(peak)) in rats. Half-lives and t(peak) of PEG-rhIL-6 were longer than those of rhIL-6 previously reported. In the present study, for deposition of PEG-rhIL-6 in rats, the tissue distribution examination showed that blood was the major organ involved, rather than liver. However, as to the elimination of PEG-rhIL-6, the major organ was the kidney. The excretion fraction of the injection dose recovered from urine was 23.32% at 192 h after subcutaneous administration. Less than 6% of PEG-rhIL-6 was eliminated via the feces at 192 h. These results indicate that PEG-rhIL-6 is a good candidate drug formulation for patients with cancer.
Collapse
Affiliation(s)
- Xue-ling He
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Hai-lin Yin
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Jiang Wu
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Ke Zhang
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Yan Liu
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Tao Yuan
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Hai-lin Rao
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Liang Li
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Xue-mei Zhang
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| |
Collapse
|
5
|
Monzen S, Mori T, Takahashi K, Abe Y, Inanami O, Kuwabara M, Kashiwakura I. The effects of (-)-epigallocatechin-3-gallate on the proliferation and differentiation of human megakaryocytic progenitor cells. JOURNAL OF RADIATION RESEARCH 2006; 47:213-20. [PMID: 16819147 DOI: 10.1269/jrr.47.213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Epigallocatechin-3-gallate (EGCg) has been widely recognized as a powerful antioxidant and free radical scavenger. The effects of EGCg on the proliferation and differentiation of X-irradiated megakaryocytic progenitor cells (colony-forming unit-megakaryocyte, CFU-Meg) using CD34+ cells prepared from human placental and umbilical cord blood have been shown. In the absence of exogenous thrombopoietin (TPO), no colonies are observed in cultures containing or lacking EGCg (1 nM-100 microM). In the presence of TPO, in contrast, EGCg significantly promotes CFU-Meg-derived colony formations within the 10-100-nM range. A 1.5-fold increase in the total number of CFU-Meg has been counted compared with the control. These favorable effects of EGCg are also observed in the culture of CD34+ cells before and after X irradiation with 2 Gy. Moreover, in order to investigate the function of EGCg promoting megakaryocytopoiesis and thrombopoiesis in ex vivo cultures, both non-irradiated and X-irradiated CD34+ cells are grown in liquid cultures supplemented with TPO. In both cultures, EGCg increases the total number of cells and megakaryocytes. It has been suggested that the favorable effects of EGCg reduce the risk factor from radiation damage in megakaryocytopoiesis.
Collapse
Affiliation(s)
- Satoru Monzen
- Laboratory of Radiological Technology, Hirosaki University School of Health Sciences, Japan
| | | | | | | | | | | | | |
Collapse
|