1
|
Guo Y, Zhai J, Zhang J, Ni C, Zhou H. Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3'-UTR. Med Sci Monit 2019; 25:3161-3169. [PMID: 31034464 PMCID: PMC6503752 DOI: 10.12659/msm.915624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Radio-resistance is an obstacle to the treatment of human nasopharyngeal carcinoma (NPC). However, how microRNAs (miRNA) are involved in this process remains unclear. In the present study we explored the role and possible molecular mechanism of miR-29a-3p, formerly known as tumor suppressors, in radio-sensitivity of NPC cells. Material/Methods A radio-resistant sub-cell line, CNE-2R, was established to detect the expression of miR-29a/b/c-3p using qRT-PCR. CCK-8 assay, colony formation assay, and single-cell gel electrophoresis (SCGE) assay were carried out to analyze the radio-sensitivity of NPC cells. qRT-PCR, luciferase reporter, and Western blot experiments were performed to validate the targeting of COL1A1 by miR-29a. Short interference RNAs (siRNAs) were used to investigate whether COL1A1 mediates the radio-sensitizer role of miR-29a. Expression of miR-29a and COL1A1 in radio-resistant NPC tissues was finally determined. Results miR-29a was decreased in the radio-resistant CNE-2R cells. Following a time-course irradiation (IR) exposure, miR-29a exhibited a time-dependent decrease. Cellular experiments confirmed that miR-29a induced radio-sensitivity of CNE-2R cells via suppressing cell viability and enhancing cell apoptosis after IR. We confirmed that COL1A1 is a direct target of miR-29a and can exert radio-resistance effects in NPC cells. We also found that knockdown of COL1A1 inhibits NPC cell viability and sensitivity to IR. Finally, we observed a downregulation of miR-29a in radio-resistant NPC tissues and its decrease was associated with upregulation of COL1A1. Conclusions miR-29a is a critical determinant of NPC radio-response for NPC patients, and its induction provides a promising therapeutic choice to elevate NPC radio-sensitivity.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jing Zhang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Changbao Ni
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huifang Zhou
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
2
|
Li Y, Han W, Ni TT, Lu L, Huang M, Zhang Y, Cao H, Zhang HQ, Luo W, Li H. Knockdown of microRNA-1323 restores sensitivity to radiation by suppression of PRKDC activity in radiation-resistant lung cancer cells. Oncol Rep 2015; 33:2821-8. [PMID: 25823795 DOI: 10.3892/or.2015.3884] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/02/2015] [Indexed: 11/05/2022] Open
Abstract
Resistance to radiation is a major problem in cancer treatment. The mechanisms of radioresistance remain poorly understood; however, mounting evidence supports a role for microRNAs (miRNAs) in the modulation of key cellular pathways mediating the response to radiation. The present study aimed to identify specific miRNAs and their effect on radioresistant cells. The global miRNA profile of an established radioresistant lung cancer cell line and the corresponding control cells was determined. Differential expression of the miRNAs was confirmed by quantitative real-time PCR (qRT-PCR). The binding effect of identical novel miRNAs and target mRNAs was determined by luciferase assay. Lung cancer cells were transfected with miRNA-specific mimics or inhibitors. The DNA-dependent protein kinase (DNA-PKcs) protein level was tested by western blot analysis. Radiosensitivity of cancer cells was determined using colony formation assay. Among the differentially expressed miRNAs, 25 miRNAs were overexpressed while 18 were suppressed in the radioresistant cells, both basally and in response to radiation compared to their control. An miRNA signature miR-1323 exhibited a >5-fold increase in the radioresistant cells. miR-1323 was demonstrated to bind to PRKDC 3'UTR, which is involved in DNA repair. Ectopic expression of miR-1323 significantly increased the survival fraction of irradiated cancer cells. Inhibition of miR-1323 reversed the radioresistance of cancer cells and subsequently suppressed the expression of miR-1323-regulated DNA-PKcs protein. The present study indicated that miRNAs are involved in the radioresistance of human lung cancer cells. A possible mechanism for resistance to radiation was via enhanced DNA repair. The present study demonstrated a role for miR-1323 in modulating radioresistance and highlights the need for further study investigating the potential role of miR-1323 as both a predictive marker of response and a novel therapeutic agent with which to enhance the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Yong Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Wei Han
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Ting-Ting Ni
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Min Huang
- Department of Occupational and Environmental Health, School of Public Health, Ningxia Medical University, Ningxia 750004, P.R. China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hui Cao
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Han-Qun Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Wen Luo
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hang Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
3
|
Selbo PK, Bostad M, Olsen CE, Edwards VT, Høgset A, Weyergang A, Berg K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 2015; 14:1433-50. [DOI: 10.1039/c5pp00027k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours.
Collapse
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Monica Bostad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Victoria Tudor Edwards
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST)
- Institute for Cancer Research
- Norwegian Radium Hospital
- Oslo University Hospital
- Oslo
| | - Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|
4
|
Li G, Qiu Y, Su Z, Ren S, Liu C, Tian Y, Liu Y. Genome-wide analyses of radioresistance-associated miRNA expression profile in nasopharyngeal carcinoma using next generation deep sequencing. PLoS One 2013; 8:e84486. [PMID: 24367666 PMCID: PMC3868612 DOI: 10.1371/journal.pone.0084486] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 11/14/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Rapidly growing evidence suggests that microRNAs (miRNAs) are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC. METHODS The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models. RESULTS 50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501), 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323) and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1) and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1). CONCLUSIONS Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.
Collapse
Affiliation(s)
- Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Zhongwu Su
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Shuling Ren
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
5
|
Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, Wang X, Zhang R, Lee MH, Yang H. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle 2012; 11:785-96. [PMID: 22374676 DOI: 10.4161/cc.11.4.19228] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is the primary treatment for nasopharyngeal carcinoma (NPC), but radioresistance severely reduces NPC radiocurability. Here, we have established a radio-resistant NPC cell line, CNE-2R, and investigate the role of miRNAs in radioresistance. The miRNAs microarray assay reveals that miRNAs are differentially expressed between CNE-2R and its parental cell line CNE-2. We find that miR-205 is elevated in CNE-2R. A target prediction algorithm suggests that miR‑205 regulates expression of PTEN, a tumor-suppressor. Introducing miR-205 into CNE-2 cells suppresses PTEN protein expression, followed by activation of AKT, increased number of foci formation and reduction of cell apoptosis postirradiation. On the other hand, knocking down miR-205 in CNE-2R cells compromises the inhibition of PTEN and increases cell apoptosis. Significantly, immunohistochemistry studies demonstrate that PTEN is downregulated at late stages of NPC, and that miR-205 is significantly elevated followed the radiotherapy. Our data conclude that miR-205 contributes to radioresistance of NPC by directly targeting PTEN. Both miR-205 and PTEN are potential predictive biomarkers for radiosensitivity of NPC and may serve as targets for achieve successful radiotherapy in NPC.
Collapse
Affiliation(s)
- Changju Qu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Singh SK, Wu W, Wu W, Wang M, Iliakis G. Extensive Repair of DNA Double-Strand Breaks in Cells Deficient in the DNA-PK-Dependent Pathway of NHEJ after Exclusion of Heat-Labile Sites. Radiat Res 2009; 172:152-64. [DOI: 10.1667/rr1745.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Natarajan AT, Palitti F. DNA repair and chromosomal alterations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:3-7. [DOI: 10.1016/j.mrgentox.2008.08.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|