1
|
Sánchez-Domene D, da Silva FR, Provete DB, Navarro-Lozano A, Acayaba RD, Montagner CC, Rossa-Feres DDC, López-Iborra GM, Almeida EA. Combined effects of landscape composition and agrochemicals on frog communities amid sugarcane-dominated agroecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2781. [PMID: 36398791 DOI: 10.1002/eap.2781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Global demand for crops will continue increasing over the next few decades to cover both food and biofuel needs. This demand will put further pressure to expand arable land and replace natural habitats. However, we are only beginning to understand the combined effects of agrochemicals and land-use change on tropical freshwater biodiversity. In this study, we analyzed how pond-dwelling anuran larvae responded to pond characteristics, landscape composition, and agrochemical contamination in a sugarcane-dominated agroecosystem in Brazil. Then we used an information theoretical approach with generalized linear models to relate species richness and abundance to predictor variables. The variation in tadpole abundance was associated with both agrochemical concentration (e.g., ametryn, diuron, and malathion) and landscape variables (e.g., percentage of forest, percentage of agriculture, and distance to closest forest). The relationship between species abundance and agrochemicals was species-specific. For example, the abundances of Scinax fuscovarius and Physalaemus nattereri were negatively associated with ametryn, and Dendropsophus nanus was negatively associated with tebuthiuron, whereas that of Leptodactylus fuscus was positively associated with malathion. Conversely, species richness was associated with distance to forest fragments and aquatic vegetation heterogeneity, but not agrochemicals. Although we were unable to assign a specific mechanism to the variation in tadpole abundance based on field observations, the lower abundance of three species in ponds with high concentrations of agrochemicals suggest they negatively impact some frog species inhabiting agroecosystems. We recommend conserving ponds near forest fragments, with abundant stratified vegetation, and far from agrochemical runoffs to safeguard more sensitive pond-breeding species.
Collapse
Affiliation(s)
- David Sánchez-Domene
- Instituto de Pesquisa em Bioenergia, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Fernando R da Silva
- Laboratório de Ecologia Teórica: Integrando Tempo, Biologia e Espaço (LET.IT.BE), Departamento de Ciências Ambientais, Universidade Federal de São Carlos - UFSCAr, Sorocaba, Brazil
| | - Diogo B Provete
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Alba Navarro-Lozano
- Laboratório de Ecologia Teórica, Departamento de Zoologia e Botânica, Universidade Estadual Paulista - UNESP, São José do Rio Preto, Brazil
| | - Raphael D Acayaba
- Laboratório de Química Ambiental, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Campinas, Brazil
| | - Cassiana C Montagner
- Laboratório de Química Ambiental, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Campinas, Brazil
| | - Denise de C Rossa-Feres
- Laboratório de Ecologia Teórica, Departamento de Zoologia e Botânica, Universidade Estadual Paulista - UNESP, São José do Rio Preto, Brazil
| | - Germán M López-Iborra
- Departamento de Ecologia/IMEM Ramon Margalef, Universidad de Alicante, Campus de San Vicente del Raspeig, Alicante, Spain
| | - Eduardo A Almeida
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Brazil
| |
Collapse
|
2
|
Cook DG, Stemle LR, Stokes DL, Messerman AF, Meisler JA, Searcy CA. Habitat value of constructed breeding pools for the endangered Sonoma population of California tiger salamander. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
| | - Leyna R. Stemle
- Department of Biology, University of Miami, 1301 Memorial Drive Coral Gables FL 33146 USA
| | - David L. Stokes
- University of Washington Bothell, 18115 Campus Way NE, Box 358530 Bothell WA 98011 USA
| | - Arianne F. Messerman
- Department of Biology, University of Miami, 1301 Memorial Drive Coral Gables FL 33146 USA
| | | | - Christopher A. Searcy
- Department of Biology, University of Miami, 1301 Memorial Drive Coral Gables FL 33146 USA
| |
Collapse
|
3
|
Chen K, Cong P, Qu L, Liang S, Sun Z, Han J. Biological connectivity and its driving mechanisms in the Liaohe Delta wetland, China. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
A decade of genetic monitoring reveals increased inbreeding for the Endangered western leopard toad, Sclerophrys pantherina. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Divergent physiological acclimation responses to warming between two co-occurring salamander species and implications for terrestrial survival. J Therm Biol 2022; 106:103228. [DOI: 10.1016/j.jtherbio.2022.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
|
6
|
Reducing Populations of an Invasive Ant Influences Survival, Growth, and Diet of Southern Toads (Anaxyrus terrestris). J HERPETOL 2022. [DOI: 10.1670/20-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Bracken JT, Davis AY, O'Donnell KM, Barichivich WJ, Walls SC, Jezkova T. Maximizing species distribution model performance when using historical occurrences and variables of varying persistency. Ecosphere 2022. [DOI: 10.1002/ecs2.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jason T. Bracken
- Department of Biology Miami University Oxford Ohio USA
- Department of Geography Miami University Oxford Ohio USA
| | | | | | | | - Susan C. Walls
- U.S. Geological Survey Wetland and Aquatic Research Center Gainesville Florida USA
| | | |
Collapse
|
8
|
Williams ST, Elbers JP, Taylor SS. Population structure, gene flow, and sex-biased dispersal in the reticulated flatwoods salamander ( Ambystoma bishopi): Implications for translocations. Evol Appl 2021; 14:2231-2243. [PMID: 34603495 PMCID: PMC8477597 DOI: 10.1111/eva.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
Understanding patterns of gene flow and population structure is vital for managing threatened and endangered species. The reticulated flatwoods salamander (Ambystoma bishopi) is an endangered species with a fragmented range; therefore, assessing connectivity and genetic population structure can inform future conservation. Samples collected from breeding sites (n = 5) were used to calculate structure and gene flow using three marker types: single nucleotide polymorphisms isolated from potential immune genes (SNPs), nuclear data from the major histocompatibility complex (MHC), and the mitochondrial control region. At a broad geographical scale, nuclear data (SNP and MHC) supported gene flow and little structure (F ST = 0.00-0.09) while mitochondrial structure was high (ΦST = 0.15-0.36) and gene flow was low. Mitochondrial markers also exhibited isolation by distance (IBD) between sites (p = 0.01) and within one site (p = 0.04) while nuclear markers did not show IBD between or within sites (p = 0.17 and p = 0.66). Due to the discordant results between nuclear and mitochondrial markers, our results suggest male-biased dispersal. Overall, salamander populations showed little genetic differentiation and structure with some gene flow, at least historically, among sampling sites. Given historic gene flow and a lack of population structure, carefully considered reintroductions could begin to expand the limited range of this salamander to ensure its long-term resilience.
Collapse
Affiliation(s)
- Steven T. Williams
- School of Renewable Natural ResourcesLouisiana State University AgCenterBaton RougeLouisianaUSA
| | | | - Sabrina S. Taylor
- School of Renewable Natural ResourcesLouisiana State University AgCenterBaton RougeLouisianaUSA
| |
Collapse
|
9
|
Montgomery FA, Reid SM, Mandrak NE. Imperfect detection biases extinction‐debt assessments. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Fielding A. Montgomery
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Scott M. Reid
- Ontario Ministry of Natural Resources and Forestry 300 Water Street, Peterborough Ontario Canada
| | - Nicholas E. Mandrak
- Department of Biological Sciences University of Toronto Scarborough Scarborough Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
10
|
Metapopulation genetics of endangered reticulated flatwoods salamanders (Ambystoma bishopi) in a dynamic and fragmented landscape. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Williams ST, Haas CA, Roberts JH, Taylor SS. Depauperate major histocompatibility complex variation in the endangered reticulated flatwoods salamander (Ambystoma bishopi). Immunogenetics 2020; 72:263-274. [PMID: 32300829 DOI: 10.1007/s00251-020-01160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
Reticulated flatwoods salamander (Ambystoma bishopi) populations began decreasing dramatically in the 1900s. Contemporary populations are small, isolated, and may be susceptible to inbreeding and reduced adaptive potential because of low genetic variation. Genetic variation at immune genes is especially important as it influences disease susceptibility and adaptation to emerging infectious pathogens, a central conservation concern for declining amphibians. We collected samples from across the extant range of this salamander to examine genetic variation at major histocompatibility complex (MHC) class Iα and IIβ exons as well as the mitochondrial control region. We screened tail or toe tissue for ranavirus, a pathogen associated with amphibian declines worldwide. Overall, we found low MHC variation when compared to other amphibian species and did not detect ranavirus at any site. MHC class Iα sequencing revealed only three alleles with a nucleotide diversity of 0.001, while MHC class IIβ had five alleles with a with nucleotide diversity of 0.004. However, unique variation still exists across this species' range with private alleles at three sites. Unlike MHC diversity, mitochondrial variation was comparable to levels estimated for other amphibians with nine haplotypes observed, including one haplotype shared across all sites. We hypothesize that a combination of a historic disease outbreak and a population bottleneck may have contributed to low MHC diversity while maintaining higher levels of mitochondrial DNA variation. Ultimately, MHC data indicated that the reticulated flatwoods salamander may be at an elevated risk from infectious diseases due to low levels of immunogenetic variation necessary to combat novel pathogens.
Collapse
Affiliation(s)
- Steven Tyler Williams
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70806, USA.
| | - Carola A Haas
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James H Roberts
- Department of Biology, Georgia Southern University, Statesboro, GA, 30458, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70806, USA
| |
Collapse
|
12
|
Stream salamander persistence influenced by the interaction between exurban housing age and development. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Walls SC, Barichivich WJ, Chandler J, Meade AM, Milinichik M, O'Donnell KM, Owens ME, Peacock T, Reinman J, Watling RC, Wetsch OE. Seeking shelter from the storm: Conservation and management of imperiled species in a changing climate. Ecol Evol 2019; 9:7122-7133. [PMID: 31380037 PMCID: PMC6662284 DOI: 10.1002/ece3.5277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change is anticipated to exacerbate the extinction risk of species whose persistence is already compromised by habitat loss, invasive species, disease, or other stressors. In coastal areas of the southeastern United States (USA), many imperiled vertebrates are vulnerable to hurricanes, which climate models predict to become more severe in the 21st century. Despite this escalating threat, explicit adaptation strategies that address hurricane threats, in particular, and climate change more generally, are largely underrepresented in recovery planning and implementation. We provide a basis for stronger emphasis on strategic planning for imperiled species facing the increasing threat of catastrophic hurricanes. Our reasoning comes from observations of short-term environmental and biological impacts of Hurricane Michael, which impacted the Gulf Coast of the southeastern USA in October 2018. During this storm, St. Marks National Wildlife Refuge, located along the northern Gulf of Mexico's coast in the panhandle region of Florida, received storm surge that was 3.0-3.6 m (NAVD88) above sea level. Storm surge pushed sea water into some ephemeral freshwater ponds used for breeding by the federally threatened frosted flatwoods salamander (Ambystoma cingulatum). After the storm, specific conductance across all ponds measured varied from 80 to 23,100 µS/cm, compared to 75 to 445 µS/cm in spring 2018. For 17 overwashed wetlands that were measured in both spring and fall 2018, posthurricane conductance observations were, on average, more than 90 times higher than in the previous spring, setting the stage for varying population responses across this coastal landscape. Importantly, we found live individual flatwoods salamanders at both overwashed and non-overwashed sites, although we cannot yet assess the demographic consequences of this storm. We outline actions that could be incorporated into climate adaptation strategies and recovery planning for imperiled species, like A. cingulatum, that are associated with freshwater coastal wetlands in hurricane-prone regions.
Collapse
Affiliation(s)
- Susan C Walls
- Wetland and Aquatic Research Center U.S. Geological Survey Gainesville Florida
| | | | - Jonathan Chandler
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Ashley M Meade
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Marysa Milinichik
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | | | - Megan E Owens
- Wetland and Aquatic Research Center U.S. Geological Survey Gainesville Florida
- Environmental Stewards Program Conservation Legacy Durango Colorado
| | - Terry Peacock
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Joseph Reinman
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Rebecca C Watling
- Wetland and Aquatic Research Center U.S. Geological Survey Gainesville Florida
- Environmental Stewards Program Conservation Legacy Durango Colorado
| | - Olivia E Wetsch
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| |
Collapse
|
14
|
Russart KLG, Nelson RJ. Artificial light at night alters behavior in laboratory and wild animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:401-408. [PMID: 29806740 DOI: 10.1002/jez.2173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
Abstract
Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Randy J Nelson
- Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
15
|
Walls SC. Coping With Constraints: Achieving Effective Conservation With Limited Resources. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
16
|
O’Donnell KM, Messerman AF, Barichivich WJ, Semlitsch RD, Gorman TA, Mitchell HG, Allan N, Fenolio D, Green A, Johnson FA, Keever A, Mandica M, Martin J, Mott J, Peacock T, Reinman J, Romañach SS, Titus G, McGowan CP, Walls SC. Structured decision making as a conservation tool for recovery planning of two endangered salamanders. J Nat Conserv 2017. [DOI: 10.1016/j.jnc.2017.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Feral swine Sus scrofa: a new threat to the remaining breeding wetlands of the Vulnerable reticulated flatwoods salamander Ambystoma bishopi. ORYX 2017. [DOI: 10.1017/s0030605316001253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractFeral swine Sus scrofa have been implicated as a major threat to sensitive habitats and ecosystems as well as threatened wildlife. Nevertheless, direct and indirect impacts on threatened species (especially small, fossorial species) are not well documented. The decline of the U.S. federally endangered reticulated flatwoods salamander Ambystoma bishopi, categorized as Vulnerable on the IUCN Red List, has been rapid and there are few remaining breeding locations for this species. The flatwoods salamander depends on complex herbaceous vegetation in all life stages, including eggs, larvae and adults. Historically sets of hog tracks have been observed only occasionally in the vicinity of monitored reticulated flatwoods salamander breeding wetlands, and damage to the wetlands had never been recorded. However, during the autumn–winter breeding season of 2013–2014 we observed a large increase in hog sign, including extensive rooting damage, in known flatwoods salamander breeding wetlands. Our objective was to assess the amount of hog sign and damage in these wetlands and to take corrective management actions to curb additional impacts. Of 28 wetlands surveyed for hog sign, presence was recorded at 68%, and damage at 54%. Of the 11 sites known to be occupied by flatwoods salamanders in 2013–2014, 64% had presence, and 55% had damage. We found that regular monitoring of disturbance in wetland habitats was a valuable tool to determine when intervention was needed and to assess the effectiveness of intervention. Habitat damage caused by feral hogs poses a potentially serious threat to the salamanders, which needs to be mitigated using methods to control and exclude hogs from this sensitive habitat.
Collapse
|
18
|
Balàž V, Gortázar Schmidt C, Murray K, Carnesecchi E, Garcia A, Gervelmeyer A, Martino L, Munoz Guajardo I, Verdonck F, Zancanaro G, Fabris C. Scientific and technical assistance concerning the survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU. EFSA J 2017; 15:e04739. [PMID: 32625419 PMCID: PMC7010177 DOI: 10.2903/j.efsa.2017.4739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A new fungus, Batrachochytrium salamandrivorans (Bsal), was identified in wild populations of salamanders in the Netherlands and Belgium, and in kept salamander populations in Germany and the United Kingdom. EFSA assessed the potential of Bsal to affect the health of wild and kept salamanders in the EU, the effectiveness and feasibility of a movement ban of traded salamanders, the validity, reliability and robustness of available diagnostic methods for Bsal detection, and possible alternative methods and feasible risk mitigation measures to ensure safe international and EU trade of salamanders and their products. Bsal was isolated and characterised in 2013 from a declining fire salamander (Salamandra salamandra) population in the Netherlands. Based on the available evidence, it is likely that Bsal is a sufficient cause for the death of S. salamandra both in the laboratory and in the wild. Despite small sample sizes, the available experimental evidence indicates that Bsal is associated with disease and death in individuals of 12 European and 3 Asian salamander species, and with high mortality rate outbreaks in kept salamanders. Bsal experimental infection was detected in individuals of at least one species pertaining to the families Salamandridae, Plethodontidae, Hynobiidae and Sirenidae. Movement bans constitute key risk mitigation measures to prevent pathogen spread into naïve areas and populations. The effectiveness of a movement ban is mainly dependent on the import volumes, possibility of Bsal to remain viable outside susceptible/tolerant species, and the capacity to limit illegal movements. Duplex real-time PCR can be used to detect Bsal DNA, but has not been fully validated. Quarantining salamanders, enacting legislation that requires testing of animals to demonstrate freedom from Bsal, before movement can take place, restricting salamander movements, tracking all traded species, hygienic procedures/biosecurity measures before and during movements, and increasing public awareness are relevant measures for ensuring safe intra-EU and international trade of salamanders.
Collapse
|