1
|
Csaba G. Hormonal Imprinting: The First Cellular-level Evidence of Epigenetic Inheritance and its Present State. Curr Genomics 2019; 20:409-418. [PMID: 32476998 PMCID: PMC7235388 DOI: 10.2174/1389202920666191116113524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/24/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
Hormonal imprinting takes place perinatally at the first encounter between the developing hormone receptor and its target hormone. This process is needed for the normal function of the receptor-hormone pair and its effect is life-long. However, in this critical period, when the developmental window is open, related molecules (members of the same hormone family, synthetic hormones and hormone-like molecules, endocrine disruptors) also can be bound by the receptor, causing life-long faulty imprinting. In this case, the receptors’ binding capacity changes and alterations are caused at adult age in the sexual and behavioral sphere, in the brain and bones, inclination to diseases and manifestation of diseases, etc. Hereby, faulty hormonal imprinting is the basis of metabolic and immunological imprinting as well as the developmental origin of health and disease (DOHaD). Although the perinatal period is the most critical for faulty imprinting, there are other critical periods as weaning and adolescence, when the original imprinting can be modified or new imprintings develop. Hormonal imprinting is an epigenetic process, without changing the base sequence of DNA, it is inherited in the cell line of the imprinted cells and also transgenerationally (up to 1000 generations in unicellulars and up to the 3rd generation in mammals are justified). Considering the enormously growing number and amount of faulty imprinters (endocrine disruptors) and the hereditary character of faulty imprinting, this latter is threatening the whole human endocrine system.
Collapse
Affiliation(s)
- György Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Zhao B, Choi JP, Jaehne M, Gao YRE, Desai R, Tuckermann J, Zhou H, Handelsman DJ, Simanainen U. Glucocorticoid receptor in prostate epithelia is not required for corticosteroid-induced epithelial hyperproliferation in the mouse prostate. Prostate 2014; 74:1068-78. [PMID: 24862220 DOI: 10.1002/pros.22825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/24/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND Glucocorticoids are used as a last resort treatment for prostate cancer but the cell-specific glucocorticoid receptor (GR) mediated actions and the role of endogenous glucocorticoids in prostate are not understood. METHODS We evaluated the influence of prostate epithelial GR mediated actions of glucocorticoids in prostate structural development by comparing the intact wild-type (WT) and prostate epithelia selective GR knockout (peGRKO) males at 8, 20, and 35 weeks of age. We also determined the cell-specific role of GR on corticosterone treatment induced prostate abnormalities by treating peGRKO and WT male mice with corticosterone depot pellets or placebo for 4 weeks. RESULTS GR was not expressed in the epithelial cells of peGRKO prostate unlike WT but was expressed in stromal of both peGRKO and WT mice. Nevertheless, prostate weights, histological appearance, and secretory protein probasin expression in peGRKO were no different from WT. Despite lacking epithelial GR, the peGRKO prostate demonstrated corticosterone treatment induced hyperplasia similar to WT suggesting that stromal rather than epithelial GR mediates the hyperproliferative mouse prostate response to corticosterone. As circulating androgen levels were not affected by corticosterone treatment, this effect is likely to be mediated directly via prostate GR. CONCLUSIONS Sustained administration of corticosterone induces prostate hyperplasia, which is mediated via GR expressed predominantly in the stroma. Thus GR mediated actions in the prostate may have significant cell-specific effects that could be utilized for more rational therapeutic approaches in prostate cancer treatment. This also illustrates the paracrine hormonal mechanisms in prostate pathophysiology.
Collapse
Affiliation(s)
- Bin Zhao
- Andrology, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Simanainen U, McNamara K, Gao YR, McPherson S, Desai R, Jimenez M, Handelsman DJ. Anterior prostate epithelial AR inactivation modifies estrogen receptor expression and increases estrogen sensitivity. Am J Physiol Endocrinol Metab 2011; 301:E727-35. [PMID: 21750267 DOI: 10.1152/ajpendo.00580.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Androgens influence prostate growth and development, so androgen withdrawal can control progression of prostate diseases. Although estrogen treatment was originally used to induce androgen withdrawal, more recently direct estrogen effects on the prostate have been recognized, but the nature of androgen-estrogen interactions within the prostate remain poorly understood. To characterize androgen effects on estrogen sensitivity in the mouse prostate, we contrasted models of castration-induced androgen withdrawal in the prostate stromal and epithelial compartments with a prostate epithelial androgen receptor (AR) knockout (PEARKO) mouse model of selective epithelial AR inactivation. Castration markedly increased prostate epithelial estrogen receptor (ER)α immunoreactivity compared with very low ERα expression in intact males. Similarly, strong basal and luminal ERα expression was detected in PEARKO prostate of intact males, suggesting that epithelial AR activity regulated epithelial ERα expression. ERβ was strongly expressed in intact, castrated, and PEARKO prostate. However, strong clusters of epithelial ERβ positivity coincided with epithelial stratification in PEARKO prostate. In vivo estrogen sensitivity was increased in PEARKO males, with greater estradiol-induced prostate growth and epithelial proliferation leading to squamous metaplasia, featuring markedly increased epithelial proliferation, thickening, and keratinization compared with littermate controls. Our results suggest that ERα expression in the prostate epithelial cells is regulated by local, epithelia-specific, androgen-dependent mechanisms, and this imbalance in the AR- and ER-mediated signaling sensitizes the mature prostate to exogenous estrogens.
Collapse
Affiliation(s)
- Ulla Simanainen
- ANZAC Research Institute, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
4
|
Henley DV, Korach KS. Physiological effects and mechanisms of action of endocrine disrupting chemicals that alter estrogen signaling. Hormones (Athens) 2010; 9:191-205. [PMID: 20688617 PMCID: PMC4782146 DOI: 10.14310/horm.2002.1270] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Derek V Henley
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
5
|
Cowin PA, Gold E, Aleksova J, O'Bryan MK, Foster PMD, Scott HS, Risbridger GP. Vinclozolin exposure in utero induces postpubertal prostatitis and reduces sperm production via a reversible hormone-regulated mechanism. Endocrinology 2010; 151:783-92. [PMID: 20056826 PMCID: PMC2817613 DOI: 10.1210/en.2009-0982] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-kappaB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, -3A, -3B, and -3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-kappaB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression.
Collapse
Affiliation(s)
- Prue A Cowin
- Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Volle DH, Decourteix M, Garo E, McNeilly J, Fenichel P, Auwerx J, McNeilly AS, Schoonjans K, Benahmed M. The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice. J Clin Invest 2009; 119:3752-64. [PMID: 19884658 DOI: 10.1172/jci38521] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 09/09/2009] [Indexed: 12/12/2022] Open
Abstract
Studies in rodents have shown that male sexual function can be disrupted by fetal or neonatal administration of compounds that alter endocrine homeostasis, such as the synthetic nonsteroidal estrogen diethylstilbestrol (DES). Although the molecular basis for this effect remains unknown, estrogen receptors likely play a critical role in mediating DES-induced infertility. Recently, we showed that the orphan nuclear receptor small heterodimer partner (Nr0b2), which is both a target gene and a transcriptional repressor of estrogen receptors, controls testicular function by regulating germ cell entry into meiosis and testosterone synthesis. We therefore hypothesized that some of the harmful effects of DES on testes could be mediated through Nr0b2. Here, we present data demonstrating that Nr0b2 deficiency protected mice against the negative effects of DES on testis development and function. During postnatal development, Nr0b2-null mice were resistant to DES-mediated inhibition of germ cell differentiation, which may be the result of interference by Nr0b2 with retinoid signals that control meiosis. Adult Nr0b2-null male mice were also protected against the effects of DES; however, we suggest that this phenomenon was due to the removal of the repressive effects of Nr0b2 on steroidogenesis. Together, these data demonstrate that Nr0b2 plays a critical role in the pathophysiological changes induced by DES in the mouse testis.
Collapse
Affiliation(s)
- David H Volle
- INSERM U895, Centre Méditerranéen de Médecine Moléculaire, Hôpital l'Archet 2, Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Chen M, Hsu I, Wolfe A, Radovick S, Huang K, Yu S, Chang C, Messing EM, Yeh S. Defects of prostate development and reproductive system in the estrogen receptor-alpha null male mice. Endocrinology 2009; 150:251-9. [PMID: 18755802 PMCID: PMC5398428 DOI: 10.1210/en.2008-0044] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The estrogen receptor-alpha knockout (ERalphaKO, ERalpha-/-) mice were generated via the Cre-loxP system by mating floxed ERalpha mice with beta-actin (ACTB)-Cre mice. The impact of ERalpha gene deletion in the male reproductive system was investigated. The ACTB-Cre/ERalpha(-/-) male mice are infertile and have lost 90% of epididymal sperm when compared with wild-type mice. Serum testosterone levels in ACTB-Cre/ERalpha(-/-) male mice are 2-fold elevated. The ACTB-Cre/ERalpha(-/-) testes consist of atrophic and degenerating seminiferous tubules with less cellularity in the disorganized seminiferous epithelia. Furthermore, the ventral and dorsal-lateral prostates of ACTB-Cre/ERalpha(-/-) mice display reduced branching morphogenesis. Loss of ERalpha could also be responsible for the decreased fibroblast proliferation and changes in the stromal content. In addition, we found bone morphogenetic protein, a mesenchymal inhibitor of prostatic branching morphogenesis, is significantly up-regulated in the ACTB-Cre/ERalpha(-/-) prostates. Collectively, these results suggest that ERalpha is required for male fertility, acts through a paracrine mechanism to regulate prostatic branching morphogenesis, and is involved in the proliferation and differentiation of prostatic stromal compartment.
Collapse
Affiliation(s)
- Ming Chen
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 656, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chaurand P, Rahman MA, Hunt T, Mobley JA, Gu G, Latham JC, Caprioli RM, Kasper S. Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 2008; 7:411-23. [PMID: 17991918 DOI: 10.1074/mcp.m700190-mcp200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry-based tissue profiling and imaging are technologies that allow identification and visualization of protein signals directly on thin sections cut from fresh frozen tissue specimens. These technologies were utilized to evaluate protein expression profiles in the normal mouse prostate during development (1-5 weeks of age), at sexual maturation (6 weeks of age), and in adult prostate (at 10, 15, or 40 weeks of age). The evolution of protein expression during normal prostate development and maturation were subsequently compared with 15-week prostate tumors derived from genetically engineered mice carrying the Large T antigen gene under regulation of the prostate-specific probasin promoter (LPB-Tag mouse model for prostate cancer). This approach identified proteins differentially expressed at specific time points during prostate development. Furthermore expression of some of these proteins, for example probasin and spermine-binding protein, were associated with prostate maturation, and prostate tumor formation resulted in their loss of expression. Cyclophilin A, a protein found in other cancers, was differentially alpha-acetylated on the N terminus, and both isoforms appeared during normal prostate and prostate tumor development. Imaging mass spectrometry localized the protein signals to specific prostatic lobes or regions. Thus, tissue profiling and imaging can be utilized to analyze the ontogeny of protein expression during prostate morphogenesis and tumorigenesis and identify proteins that could potentially serve as biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Henley DV, Korach KS. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 2006; 147:S25-32. [PMID: 16690802 DOI: 10.1210/en.2005-1117] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The term endocrine-disrupting chemicals is used to define a structurally diverse class of synthetic and natural compounds that possess the ability to alter various components of the endocrine system and potentially induce adverse health effects in exposed individuals and populations. Research on these compounds has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. This review will describe in vitro and in vivo studies that highlight the spectrum of unique mechanisms of action and biological effects of four endocrine-disrupting chemicals--diethylstilbestrol, genistein, di(n-butyl)phthalate, and methoxyacetic acid--to illustrate the diverse and complex nature of this class of compounds.
Collapse
Affiliation(s)
- Derek V Henley
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
11
|
Simpson ER, McPherson S, Jones M, Robertson K, Boon WC, Risbridger G. Role of estrogens in the male reproductive tract. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:89-112. [PMID: 15248507 DOI: 10.1007/978-3-662-05386-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- E R Simpson
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Csaba G, Kovács P, Pállinger E. Prolonged effect of a single serotonin treatment in adult age on the serotonin and histamine content of white blood cells and mast cells of rats. Cell Biochem Funct 2003; 21:191-4. [PMID: 12736911 DOI: 10.1002/cbf.1019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hormonal imprinting was provoked by serotonin treatment in adult age. Three weeks after treatment with 100 microg serotonin, the serotonin and histamine content of peritoneal cells (mast cells, lymphocytes and the monocyte-macrophage-granulocyte group), white blood cells (lymphocytes, granulocytes and monocytes) and thymic lymphocytes was studied by flow cytometry. The content of both amines was significantly higher in the mast cells of males and lower in females. Blood lymphocytes contained a higher serotonin and histamine level in males, and a lower serotonin level in females. The peritoneal monocyte-macrophage-granulocyte group contained less serotonin in both males and females. Thymocytes contained higher levels of both amines in females and higher histamine level in males. The experiments demonstrate that a single treatment at adult age can provoke imprinting, which alters-in the present case-the serotonin and histamine content of immune cells durably.
Collapse
Affiliation(s)
- G Csaba
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
13
|
Affiliation(s)
- D H Castrillon
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA. Mechanisms of estrogen action. Physiol Rev 2001; 81:1535-65. [PMID: 11581496 DOI: 10.1152/physrev.2001.81.4.1535] [Citation(s) in RCA: 1322] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our appreciation of the physiological functions of estrogens and the mechanisms through which estrogens bring about these functions has changed during the past decade. Just as transgenic mice were produced in which estrogen receptors had been inactivated and we thought that we were about to understand the role of estrogen receptors in physiology and pathology, it was found that there was not one but two distinct and functional estrogen receptors, now called ER alpha and ER beta. Transgenic mice in which each of the receptors or both the receptors are inactive have revealed a much broader role for estrogens in the body than was previously thought. This decade also saw the description of a male patient who had no functional ER alpha and whose continued bone growth clearly revealed an important function of estrogen in men. The importance of estrogen in both males and females was also demonstrated in the laboratory in transgenic mice in which the aromatase gene was inactivated. Finally, crystal structures of the estrogen receptors with agonists and antagonists have revealed much about how ligand binding influences receptor conformation and how this conformation influences interaction of the receptor with coactivators or corepressors and hence determines cellular response to ligands.
Collapse
Affiliation(s)
- S Nilsson
- KaroBio AB and Department of Biosciences, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Estrogens exert their principal biological effects through the actions of two different intracellular estrogen receptor (ER) proteins, ER alpha and ER beta. Following the binding of steroid, the protein undergoes a conformational change that results in a transcriptionally active form. The receptor protein is locked into an active state by estradiol, which results in the transition of the receptor through a signal transduction cascade of events, ultimately resulting in the activation of specific genes, thereby inducing the biological events specific for that type of target cell. There is a large variation in the relative expression levels of the two ER isoforms in different target tissues and in different stages of development. In addition, variant forms of the two ER isoforms, the result of splice variation, have been described. ER alpha and ER beta have been shown to differ in specific aspects within the various stages of the signal transduction pathway. Thus, there is a broad spectrum of estrogen response mechanisms as a result of an infinite number of possible combinations of all these factors. In addition, there are gene regulatory mechanisms that are the result of ER--protein interactions instead of ER--DNA interactions. Steroid binding is the key initiating action of the whole pathway, which, in terms of cell biology, is a relatively slow process. The response induced through the action of ER induction can be shown to be dependent on the total dose exposure rather than estradiol concentrations at subsaturating levels.
Collapse
Affiliation(s)
- J Carlstedt-Duke
- Department of Medical Nutrition, Karolinska Institutet, Huddinge Hospital, F 60 Novum, SE-141 86 Huddinge, Sweden.
| |
Collapse
|
16
|
McPherson SJ, Wang H, Jones ME, Pedersen J, Iismaa TP, Wreford N, Simpson ER, Risbridger GP. Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 2001; 142:2458-67. [PMID: 11356695 DOI: 10.1210/endo.142.6.8079] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although androgens are the main steroids controlling the growth of the mammalian prostate, increasing evidence demonstrates that estrogens also regulate prostate development and growth. This study describes the effects of estrogen deficiency using aromatase knockout mice (ArKO) with targeted disruption of the cyp19 gene. Serum and tissue testosterone and 5alpha-dihydrotestosterone as well as serum PRL levels are significantly (P < 0.05) elevated in mature male ArKO mice. Histological, stereological, and immunohistochemical studies demonstrated enlargement of the ventral, anterior, and dorsolateral lobes of the prostate in young and older ArKO mice. Hyperplasia of the epithelial, interstitial, and luminal compartments was identified and associated with up-regulation of androgen receptors. There was no evidence of malignancy as the animals aged (up to 56 weeks). The changes observed in the prostates of ArKO mice were unaffected by maintaining mice on regular or soy-free diets. It is concluded in ArKO mice that, despite the long-term elevation of androgens and PRL, the absence of estrogen in these animals does not result in induction of malignancy in the prostate gland.
Collapse
Affiliation(s)
- S J McPherson
- Center for Urological Research, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Y Cai
- Department of Urology, the Second Clinical College, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Jarred RA, Cancilla B, Prins GS, Thayer KA, Cunha GR, Risbridger GP. Evidence that estrogens directly alter androgen-regulated prostate development. Endocrinology 2000; 141:3471-7. [PMID: 10965920 DOI: 10.1210/endo.141.9.7648] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal exposure to high doses of estrogen results in permanent suppression of prostate growth and reduced sensitivity to androgens in adulthood. It is unclear whether alterations in prostate growth are due to a direct effect of estrogens on the gland or are the result of hypothalamic-pituitary-gonadal axis suppression and a subsequent reduction in androgen levels. Therefore, the aim of this study was to determine whether estrogens have a direct effect on the prostate using a defined method of culturing neonatal prostates. Newborn rat ventral prostates were microdissected and cultured in the presence of testosterone, which resulted in branching morphogenesis and ductal canalization. Solid cords of epithelium differentiated into acini lined by tall columnar epithelial cells; these acini were surrounded by stromal cells, expressing smooth muscle alpha-actin. When cultured in the presence of 17beta-estradiol or diethylstilbestrol in addition to testosterone, androgen-induced prostatic growth was reduced, and differentiation was altered. Although estrogen-treated explants were smaller than controls, quantification of epithelial, stromal, and luminal volumes using unbiased stereology revealed significant changes; the proportion of epithelial cells and lumen decreased, and the proportion of stroma increased compared with control values. Concurrent with this reduced growth rate, we observed a disturbance in the branching pattern and a reduction in ductal canalization. Specifically, stromal differentiation and organization were disrupted, so that a discontinuous smooth muscle layer was observed around the epithelial ducts, and epithelial differentiation was altered. The effects of estrogens were not accompanied by a decrease in androgen response via the androgen receptor, because immunolocalization of this receptor remained constant. These data demonstrate that high doses of estrogens are growth inhibitory and have direct effects on prostate development in vitro, which may occur in vivo in addition to indirect effects via suppression of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- R A Jarred
- Monash Institute of Reproduction and Development, Monash University, Monash Medical Center, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|