1
|
de Freitas AC, Reolon HG, Abduch NG, Baldi F, Silva RMO, Lourenco D, Fragomeni BO, Paz CCP, Stafuzza NB. Proteomic identification of potential biomarkers for heat tolerance in Caracu beef cattle using high and low thermotolerant groups. BMC Genomics 2024; 25:1079. [PMID: 39538142 PMCID: PMC11562314 DOI: 10.1186/s12864-024-11021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Heat stress has deleterious effects on physiological and performance traits in livestock. Within this context, using tropically adapted cattle breeds in pure herds or terminal crossbreeding schemes to explore heterosis is attractive for increasing animal production in warmer climate regions. This study aimed to identify biological processes, pathways, and potential biomarkers related to thermotolerance in Caracu, a tropically adapted beef cattle breed, by proteomic analysis of blood plasma. To achieve this goal, 61 bulls had their thermotolerance evaluated through a heat tolerance index. A subset of 14 extreme animals, including the seven most thermotolerant (HIGH group) and the seven least thermotolerant (LOW group), had their blood plasma samples used for proteomic analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The differentially regulated proteins detected between HIGH and LOW groups were used to perform functional enrichment analysis and a protein-protein interaction network analysis. RESULTS A total of 217 proteins were detected only in the HIGH thermotolerant group and 51 only in the LOW thermotolerant group. In addition, 81 and 87 proteins had significantly higher and lower abundancies in the HIGH group, respectively. Regarding proteins with the highest absolute log-fold change values, we highlighted those encoded by DUSP5, IGFALS, ROCK2, RTN4, IRAG1, and NNT genes based on their functions. The functional enrichment analysis detected several biological processes, molecular functions, and pathways related to cellular responses to stress, immune system, complement system, and hemostasis in both HIGH and LOW groups, in addition to terms and pathways related to lipids and calcium only in the HIGH group. Protein-protein interaction (PPI) network revealed as important nodes many proteins with roles in response to stress, hemostasis, immune system, inflammation, and homeostasis. Additionally, proteins with high absolute log-fold change values and proteins detected as essential nodes by PPI analysis highlighted herein are potential biomarkers for thermotolerance, such as ADRA1A, APOA1, APOB, APOC3, C4BPA, CAT, CFB, CFH, CLU, CXADR, DNAJB1, DNAJC13, DUSP5, FGA, FGB, FGG, HBA, HBB, HP, HSPD1, IGFALS, IRAG1, KNG1, NNT, OSGIN1, PROC, PROS1, ROCK2, RTN4, RYR1, TGFB2, VLDLR, VTN, and VWF. CONCLUSIONS Identifying potential biomarkers, molecular mechanisms and pathways that act in response to heat stress in tropically adapted beef cattle contributes to developing strategies to improve performance and welfare traits in livestock under tropical climates.
Collapse
Affiliation(s)
- Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, MG, 38709-899, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Natalya G Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, SP, 15130-000, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil.
| |
Collapse
|
2
|
Lu HC, Lin T, Ng MY, Hsieh CW, Liao YW, Chen CC, Yu CC, Chen CJ. Anti-inflammaging effects of vitamin D in human gingival fibroblasts with advanced glycation end product stimulation. J Dent Sci 2023; 18:666-673. [PMID: 37021258 PMCID: PMC10068372 DOI: 10.1016/j.jds.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Indexed: 04/05/2023] Open
Abstract
Background/purpose :Both periodontal disease and diabetes mellitus (DM) are long-term inflammatory disorders that are highly prevalent and have a significant health impact. Inflammaging, a state of pre-aging and hyperinflammatory state has been acknowledged for its role in DM patients to have heightened risk of periodontitis. Numerous evidences revealed that inflammaging contributed by cell senescence, acceleration of inflammation and oxidative stress participates in the destruction of periodontium in DM. Abilities of vitamin D in suppressing inflammation and oxidative stress have been revealed in a range of tissues, however in DM’s gingival cells, the effect remain undefined. Materials and methods : Under the stimulation of advanced glycation end-products (AGEs), we assessed the cell proliferation in human gingival fibroblast (HGF), IL-6 and IL-8 secretions, cellular senescence expression and generation of reactive oxygen species (ROS) with or without vitamin D intervention. Following that, we examined the expression of Nrf2 and HO-1 to see if vitamin D was able to modulate the anti-oxidant signaling. A knockdown experiment was then conducted to proof the participation of Nrf2 on the secretion of pro-inflammatory IL-6 and IL-8. Results : Following the treatment of vitamin D, AGEs-elicited IL-6 and IL-8 production and cell senescence were dose-dependently repressed. Moreover, vitamin D attenuated AGEs-induced ROS in a dose-dependent pattern. Results from qRT-PCR demonstrated vitamin D reversed the suppression of Nrf2 and HO-1 induced by AGEs. Our findings revealed that the anti-inflammatory and anti-oxidant effect in vitamin D was mediated via the upregulation of Nrf2 expression. Conclusion : These data showed that high levels of AGEs in the gingiva lead to inflammaging reflected by increased pro-inflammatory cytokines, cell senescence expression and oxidative stress. Vitamin D supplementation can reduce oxidative stress and inflammation via the upregulation of Nrf2 signaling and hence, may be a potential approach for treatment of diabetes-associated periodontitis.
Collapse
Affiliation(s)
- Hung-Chieh Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Wen Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Cheng Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Corresponding author. Institute of Oral Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Chun-Jung Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Division of Periodontics, Department of Dentistry, Chi Mei Medical Center, Tainan, Taiwan
- Corresponding author. Division of Periodontics, Department of Dentistry, Chi Mei Medical Center, No. 901, Zhonghua Rd. Yongkang Dist., Tainan 71004, Taiwan.
| |
Collapse
|
3
|
Lan Q, Cao Z, Yang X, Gu Z. Physiological and Proteomic Responses of Dairy Buffalo to Heat Stress Induced by Different Altitudes. Metabolites 2022; 12:909. [PMID: 36295811 PMCID: PMC9609643 DOI: 10.3390/metabo12100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Buffalo are mainly distributed in low-altitude (LA), medium-altitude (MA), and high-altitude (HA) regions characterised by different thermal and oxygen environments in Yunnan province, China. Due to black skin, sparse hair, and the low density of skin sweat glands, buffalo are more sensitive to heat stress. Here, we used data-independent acquisition (DIA) proteomics to reveal a broad spectrum of proteins that play roles in adaptation to the heat stress of buffalo raised at low altitude or hypoxia at high altitude. LA buffalo showed higher body temperatures than MA- and HA buffalo, and HA buffalo had higher levels of GSH and SOD and lower levels of ROS compared to LA and MA buffalo. In 33 samples, 8476 peptides corresponding to 666 high-confidence proteins were detected. The levels of circulating complement proteins in the immune pathways were lower in LA and MA buffalo than in HA buffalo. There were higher levels of alpha-1 acid glycoprotein in LA buffalo than in MA and HA buffalo. Relative to MA buffalo, levels of blood oxygen delivery proteins were higher in LA and HA buffalo. A higher abundance of apolipoproteins was detected in LA and MA buffalo than in HA buffalo. In summary, buffalo adopted similar adaptation strategies to oxidative stress induced by heat stress or hypoxia, including immunological enhancement, high efficiency of blood oxygen delivery, and the inhibition of lipid oxidation.
Collapse
Affiliation(s)
- Qin Lan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhiyong Cao
- Faculty of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Xiujuan Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming 650201, China
| | - Zhaobing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming 650201, China
| |
Collapse
|
4
|
Liang ZL, Chen F, Park S, Balasubramanian B, Liu WC. Impacts of Heat Stress on Rabbit Immune Function, Endocrine, Blood Biochemical Changes, Antioxidant Capacity and Production Performance, and the Potential Mitigation Strategies of Nutritional Intervention. Front Vet Sci 2022; 9:906084. [PMID: 35720853 PMCID: PMC9201964 DOI: 10.3389/fvets.2022.906084] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Heat stress has become a widespread concern in the world, which is one of the major environmental stressors and causes substantial economic loss in the rabbit industry. Heat stress leads to multiple damages to the health of rabbits, such as organ damage, oxidative stress, disordered endocrine regulation, suppressed immune function and reproductive disorders, ultimately, induces the decreased production performance and increased mortality. Nutritional approaches, including feeding strategies, adjusting feed formula, and supplementing vitamins, minerals, electrolytes, Chinese herbal medicines, and functional active substances to the feed, were reported to mitigate the detrimental effects of heat stress in rabbits. Therefore, elucidating the damage of heat stress to rabbits; proper management and nutritional approaches should be considered to solve the heat stress issue in rabbits. This review highlights the scientific evidence regarding the effects of heat stress on rabbit's immune function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention to alleviate heat stress in rabbits; which could contribute to develop nutritional strategies in relieving heat stress of rabbits.
Collapse
Affiliation(s)
- Zi-Long Liang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Fan Chen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Al-Ishaq RK, Kubatka P, Brozmanova M, Gazdikova K, Caprnda M, Büsselberg D. Health implication of vitamin D on the cardiovascular and the renal system. Arch Physiol Biochem 2021; 127:195-209. [PMID: 31291127 DOI: 10.1080/13813455.2019.1628064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D regulates the calcium and phosphorus balance in the body. The activated form of vitamin D (1 α,25-dihydroxyvitamin D) binds to vitamin D receptor which regulates genes that control cell proliferation, differentiation and apoptosis. In the cardiovascular system, the vitamin D receptor is present in cardiomyocytes and the arterial wall. A clear correlation between vitamin D level and cardiovascular diseases is established. Vitamin D deficiency affects the renin-angiotensin system leading to ventricular hypertrophy and eventually to stroke. While clinical trials highlighted the positive effects of vitamin D supplements on cardiovascular disease these still need to be confirmed. This review outlines the association between vitamin D and cardiovascular and renal disease summarising the experimental data of selective cardiovascular disorders.
Collapse
Affiliation(s)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Martina Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Doha, Qatar
| |
Collapse
|
6
|
Sawicki K, Czajka M, Matysiak-Kucharek M, Kurzepa J, Wojtyła-Buciora P, Zygo K, Kruszewski M, Kapka-Skrzypczak L. Chlorpyrifos alters expression of enzymes involved in vitamin D 3 synthesis in skin cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104812. [PMID: 33838712 DOI: 10.1016/j.pestbp.2021.104812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Skin acts as a mechanical barrier between human body and environment. Epidermal cells are regularly exposed to many physiological and environmental stressors, such as pesticides, like chlorpyrifos (CPS). It is recognised that CPS may affect metabolism of other exo- and endogenous substances by affecting enzyme activity and expression. This study aims to investigate the effect of CPS on expression of CYP27A1, CYP27B1 and CYP24A1, the enzymes involved in synthesis and metabolism of vitamin D3, in human keratinocytes HaCaT and human fibroblasts BJ. Synthesis of vitamin D3 in cells was initiated by irradiating with UVB. Expression of CYP27A1, CYP27B1 and CYP24A1 was evaluated by RT-qPCR and Western blot. Our experiments revealed that expression of all tested cytochrome P450 isoforms in cells exposed to CPS changed significantly. Exposure of HaCaT keratinocytes to CPS decreased CYP27A1 mRNA levels, but increased CYP27B1 and CYP24A1 mRNA levels. This was confirmed at the protein level, except for the CYP27A1 expression. Outcome for the BJ cells was however less conclusive. Though exposure to CPS decreased CYP27A1 and CYP27B1 mRNA levels, at protein level increasing concentration of CPS and UVB intensity induced expression of CYP27A1 and CYP24A1. The expression of CYP27B1 isoform decreased in line with mRNA level. Nevertheless, it can be concluded that CPS may therefore interrupt vitamin D3 metabolism in skin cells, but further studies are required to better understand such mechanisms.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | | | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University, Lublin, Poland
| | | | - Karol Zygo
- Department of Public Health, Medical University, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
7
|
Kumar S, Nanduri R, Bhagyaraj E, Kalra R, Ahuja N, Chacko AP, Tiwari D, Sethi K, Saini A, Chandra V, Jain M, Gupta S, Bhatt D, Gupta P. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 2020; 17:2273-2289. [DOI: 10.1080/15548627.2020.1822088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sumit Kumar
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ravikanth Nanduri
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ella Bhagyaraj
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rashi Kalra
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nancy Ahuja
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anuja P. Chacko
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Drishti Tiwari
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kanupriya Sethi
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ankita Saini
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Vemika Chandra
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Monika Jain
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shalini Gupta
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepak Bhatt
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pawan Gupta
- Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
8
|
The Vitamin D⁻Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas. Nutrients 2018; 10:nu10050554. [PMID: 29710859 PMCID: PMC5986434 DOI: 10.3390/nu10050554] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Vitamin D is unique in being generated in our skin following ultraviolet radiation (UVR) exposure. Ongoing research into vitamin D must therefore always consider the influence of UVR on vitamin D processes. The close relationship between vitamin D and UVR forms the basis of the “vitamin D–folate hypothesis”, a popular theory for why human skin colour has evolved as an apparent adaption to UVR environments. Vitamin D and folate have disparate sensitivities to UVR; whilst vitamin D may be synthesised following UVR exposure, folate may be degraded. The vitamin D–folate hypothesis proposes that skin pigmentation has evolved as a balancing mechanism, maintaining levels of these vitamins. There are several alternative theories that counter the vitamin D–folate hypothesis. However, there is significant overlap between these theories and the now known actions of vitamin D and folate in the skin. The focus of this review is to present an update on the vitamin D–folate hypothesis by integrating these current theories and discussing new evidence that supports associations between vitamin D and folate genetics, UVR, and skin pigmentation. In light of recent human migrations and seasonality in disease, the need for ongoing research into potential UVR-responsive processes within the body is also discussed.
Collapse
|
9
|
Ferreira LEN, Muniz BV, Burga-Sánchez J, Volpato MC, de Paula E, Rosa EAR, Groppo FC. The effect of two drug delivery systems in ropivacaine cytotoxicity and cytokine release by human keratinocytes and fibroblasts. J Pharm Pharmacol 2016; 69:161-171. [DOI: 10.1111/jphp.12680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/12/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Modified drug delivery systems have been developed to improve pharmacological properties of local anaesthetics. However, the inflammatory potential of these formulations was not investigated. This study compared the in-vitro effects of ropivacaine (ropi) in plain, liposomal (MLV) or 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) formulations on cell viability, apoptosis and cytokine (IL-1α, TNF-α, IL-6 and IL-10) release.
Methods
Human immortalized keratinocytes (HaCaT) and human immortalized gingival fibroblasts (HGF) were exposed to 1–100 μm ropi concentrations. The cell viability was measured by XTT and LIVE/DEAD assay. Apoptosis was performed by flow cytometry, and cytokine release was measured by ELISA assay.
Key findings
Human immortalized keratinocyte viability was reduced by ropi and both drug delivery systems. However, none of the formulations induced apoptosis. Results showed a differential regulation of IL-1α TNF-α, IL-6 and IL-10 by HaCaT and HGF. Ropi-HP-β-CD increased twofold the IL-6 release by HGF in comparison with the control, while 100 μm ropi-MLV led to an increased release of all pro-inflammatory cytokines by HGF.
Conclusion
The loss in cell viability was not related to cellular apoptosis. Ropi complexed with HP-β-CD showed a similar cytokine release pattern when compared to the plain formulation. Thus, the HP-β-CD form was a better drug carrier than the MLV form for ropivacaine drug delivery.
Collapse
Affiliation(s)
- Luiz Eduardo Nunes Ferreira
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Bruno Vilela Muniz
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Jonny Burga-Sánchez
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Maria Cristina Volpato
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| | - Eneida de Paula
- Department of Biochemistry, Biology Institute, University of Campinas – UNICAMP – Campinas, São Paulo, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- Xenobiotics Research Unit, Laboratory of Stomatology, Biological and Health Sciences Center, The Pontifical Catholic University of Paraná – Curitiba, Paraná, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP – Piracicaba, São Paulo, Brazil
| |
Collapse
|
10
|
Bondza-Kibangou P, Millot C, Dufer J, Millot JM. Modifications of Cellular Autofluorescence Emission Spectra under Oxidative Stress Induced by 1 α,25dihydroxyvitamin D3 and its Analog EB1089. Technol Cancer Res Treat 2016; 3:383-91. [PMID: 15270590 DOI: 10.1177/153303460400300409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We attempted to characterize the cellular autofluorescence phenomenon of living HL-60 cells and to appraise its modifications under oxidative stress conditions induced by 1α,25(OH)2D3 (VD3) and its analog EB1089. Autofluorescence emission spectra of human promyelocytic HL-60 leukemic cells were monitored using laser scanning confocal microspectrofluorometry under UV excitation. Evaluation of reactive oxygen species (ROS) release was performed using the 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) staining and fluorescence emission measurement. VD3 (1, 10, 100 nM) or EB1089 (0.1, 1 and 10 nM) induces a decrease in autofluorescence emission intensity that can be attributed to the oxidation of the coenzyme nicotinamide adenine dinucleotide (phosphate) NAD(P)H into NAD(P)+. A dose-dependent increase (p<0.05) in ROS release is observed in VD3- and EB1089-treated cells. As compared with VD3- or EB1089-treated cells, doxorubicin-VD3 or doxorubicin-EB1089 treatments strongly decrease the autofluorescence intensity and induce a higher release of ROS (p<0.05). The association of antioxidants (N-acetyl cysteine, superoxide dismutase, catalase) with VD3 or EB1089 induce a more limited autofluorescence decrease and a weaker ROS generation, as compared with VD3 and EB1089 treated cells. In conclusion, the free radicals release, generated by VD3 and EB1089, was associated with the decrease in autofluorescence emission and can be modulated by doxorubicin and antioxidants.
Collapse
Affiliation(s)
- Patrick Bondza-Kibangou
- FR de Pharmacie, Unité MéDIAN, CNRS-UMR 6142, 1 Avenue du Maréchal Juin, 51096, Reims, France
| | | | | | | |
Collapse
|
11
|
Ziv E, Koren R, Zahalka MA, Ravid A. TNF-α increases the expression and activity of vitamin D receptor in keratinocytes: role of c-Jun N-terminal kinase. DERMATO-ENDOCRINOLOGY 2016; 8:e1137399. [PMID: 27195054 PMCID: PMC4862379 DOI: 10.1080/19381980.2015.1137399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Abstract
Several inflammatory mediators increase calcitriol production by epidermal keratinocytes. In turn calcitriol attenuates the keratinocyte inflammatory response. Since the effect of the in-situ generated calcitriol depends also on the sensitivity to the hormone we studied the effect of inflammatory cytokines on the response of HaCaT human keratinocytes to calcitriol by examining the expression and transcriptional activity of VDR. Treatment with TNF, but not with IL-1β or interferon γ, increased VDR protein level, while decreasing the level of its heterodimerization partner RXRα. This was associated with increased VDR mRNA levels. c-Jun N-terminal kinase, but not P38 MAPK or NFκB, was found to participate in the upregulation of VDR by TNF. The functional significance of the modulation of VDR and RXRα levels by TNF is manifested by increased induction of VDR target gene CYP24A1 by calcitriol. Calcitriol, in turn, inhibited the enhanced expression of VDR by TNF. In conclusion, the inflammatory cytokine TNF increases the response of keratinocytes to calcitriol through upregulation of its receptor VDR, which in turn is subject to negative feedback by the hormone accelerating the return of the keratinocyte vitamin D system to its basal activity. We surmise that the increased generation and sensitivity to calcitriol in keratinocytes play a role in the resolution of epidermal inflammation.
Collapse
Affiliation(s)
- Ester Ziv
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Koren
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Muayad A Zahalka
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus , Petah Tikva, Israel
| | - Amiram Ravid
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0126355. [PMID: 26020962 PMCID: PMC4447353 DOI: 10.1371/journal.pone.0126355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/22/2015] [Indexed: 12/11/2022] Open
Abstract
Background Dietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord. Objective We analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio). Methods Beginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study. Results DEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females. Conclusion D3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.
Collapse
Affiliation(s)
- Elnaz Moghimi
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Nanduri R, Mahajan S, Bhagyaraj E, Sethi K, Kalra R, Chandra V, Gupta P. The Active Form of Vitamin D Transcriptionally Represses Smad7 Signaling and Activates Extracellular Signal-regulated Kinase (ERK) to Inhibit the Differentiation of a Inflammatory T Helper Cell Subset and Suppress Experimental Autoimmune Encephalomyelitis. J Biol Chem 2015; 290:12222-36. [PMID: 25809484 DOI: 10.1074/jbc.m114.621839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 12/22/2022] Open
Abstract
The ability of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), to transcriptionally modulate Smads to inhibit Th17 differentiation and experimental autoimmune encephalomyelitis (EAE) has not been adequately studied. This study reports modulation of Smad signaling by the specific binding of the VDR along with its heterodimeric partner RXR to the negative vitamin D response element on the promoter of Smad7, which leads to Smad7 gene repression. The vitamin D receptor-mediated increase in Smad3 expression partially explains the IL10 augmentation seen in Th17 cells. Furthermore, the VDR axis also modulates non-Smad signaling by activating ERK during differentiation of Th17 cells, which inhibits the Th17-specific genes il17a, il17f, il22, and il23r. In vivo EAE experiments revealed that, 1,25(OH)2D3 suppression of EAE correlates with the Smad7 expression in the spleen and lymph nodes. Furthermore, Smad7 expression also correlates well with IL17 and IFNγ expression in CNS infiltered inflammatory T cells. We also observed similar gene repression of Smad7 in in vitro differentiated Th1 cells when cultured in presence of 1,25(OH)2D3. The above canonical and non-canonical pathways in part address the ability of 1,25(OH)2D3-VDR to inhibit EAE.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Sahil Mahajan
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Ella Bhagyaraj
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Kanupriya Sethi
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Rashi Kalra
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Vemika Chandra
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| | - Pawan Gupta
- From the Department of Protein Science and Molecular Biology, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39 A, Chandigarh 160036, India
| |
Collapse
|
14
|
Silva RA, Palladino MV, Cavalheiro RP, Machado D, Cruz BLG, Paredes-Gamero EJ, Gomes-Marcondes MCC, Zambuzzi WF, Vasques L, Nader HB, Souza ACS, Justo GZ. Activation of the low molecular weight protein tyrosine phosphatase in keratinocytes exposed to hyperosmotic stress. PLoS One 2015; 10:e0119020. [PMID: 25781955 PMCID: PMC4363792 DOI: 10.1371/journal.pone.0119020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 01/15/2015] [Indexed: 12/18/2022] Open
Abstract
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.
Collapse
Affiliation(s)
- Rodrigo A. Silva
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Marcelly V. Palladino
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Renan P. Cavalheiro
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Daisy Machado
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Bread L. G. Cruz
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Edgar J. Paredes-Gamero
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Maria C. C. Gomes-Marcondes
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Willian F. Zambuzzi
- Departamento de Química e Bioquímica, IBB, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Luciana Vasques
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Helena B. Nader
- Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Carolina S. Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Giselle Z. Justo
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Departamento de Bioquímica (Campus São Paulo) and Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Morales E, Rodriguez A, Valvi D, Iñiguez C, Esplugues A, Vioque J, Marina LS, Jiménez A, Espada M, Dehli CR, Fernández-Somoano A, Vrijheid M, Sunyer J. Deficit of vitamin D in pregnancy and growth and overweight in the offspring. Int J Obes (Lond) 2014; 39:61-8. [PMID: 25189178 DOI: 10.1038/ijo.2014.165] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Maternal vitamin D status during fetal development may influence offspring growth and risk of obesity; however, evidence in humans is limited. OBJECTIVE To investigate whether maternal circulating 25-hydroxyvitamin D3 (25(OH)D3) concentration in pregnancy is associated with offspring prenatal and postnatal growth and overweight. METHODS Plasma 25(OH)D3 concentration was measured in pregnant women (median weeks of gestation 14.0, range 13.0-15.0) from the INMA (INfancia y Medio Ambiente) cohort (Spain, 2003-2008) (n = 2358). Offspring femur length (FL), biparietal diameter (BPD), abdominal circumference (AC) and estimated fetal weight (EFW) were evaluated at 12, 20 and 34 weeks of gestation by ultrasound examinations. Fetal overweight was defined either as AC or as EFW ⩾ 90th percentile. Child's anthropometry was recorded at ages 1 and 4 years. Rapid growth was defined as a weight gain z-score of >0.67 from birth to ages 6 months and 1 year. Age- and sex-specific z-scores for body mass index (BMI) were calculated at ages 1 and 4 years (World Health Organization referent); infant's overweight was defined as a BMI z-score ⩾ 85th percentile. RESULTS We found no association of maternal 25(OH)D3 concentration with FL and a weak inverse association with BPD at 34 weeks. Maternal deficit of 25(OH)D3 (<20 ng ml(-1)) was associated with increased risk of fetal overweight defined as AC ⩾ 90th percentile (odds ratio (OR) = 1.50, 95% confidence interval (CI): 1.01-2.21; P = 0.041) or either as EFW ⩾ 90th percentile (OR = 1.47, 95% CI: 1.00-2.16; P = 0.046). No significant associations were found with rapid growth. Deficit of 25(OH)D3 in pregnancy was associated with an increased risk of overweight in offspring at age 1 year (OR = 1.42, 95% CI: 1.02-1.97; P = 0.039); however, the association was attenuated at age 4 years (OR = 1.19, 95% CI: 0.83-1.72; P = 0.341). CONCLUSIONS Vitamin D deficiency in pregnancy may increase the risk of prenatal and early postnatal overweight in offspring. Clinical trials are warranted to determine the role of vitamin D in the early origins of obesity.
Collapse
Affiliation(s)
- E Morales
- 1] Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain [2] Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain [3] Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain [4] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - A Rodriguez
- 1] Hospital de Sabadell, Corporació Sanitària Parc Taulí, Institut Universitari ParcTaulí-UAB, Sabadell, Catalonia, Spain [2] Universitat Autònoma de Barcelona, Campus d'Excelència Internacional Bellaterra, Barcelona, Catalonia, Spain
| | - D Valvi
- 1] Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain [3] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - C Iñiguez
- 1] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain [2] Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain
| | - A Esplugues
- 1] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain [2] Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain
| | - J Vioque
- 1] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain [2] Departamento de Salud Publica, Universidad Miguel Hernandez, Alicante, Spain
| | - L S Marina
- 1] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain [2] Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Gipuzkoa, Spain [3] Health Research Institute Biodonostia, San Sebastián, Gipuzkoa, Spain
| | - A Jiménez
- 1] Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Gipuzkoa, Spain [2] Health Research Institute Biodonostia, San Sebastián, Gipuzkoa, Spain
| | - M Espada
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, Euskadi, Spain
| | - C R Dehli
- Hospital San Agustín, Avilés, Oviedo, Spain
| | - A Fernández-Somoano
- 1] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain [2] Department of Preventive Medicine and Public Health, University of Oviedo, Oviedo, Asturias, Spain
| | - M Vrijheid
- 1] Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain [2] Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain [3] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - J Sunyer
- 1] Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain [2] Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain [3] Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain [4] CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
16
|
|
17
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
18
|
vinh quốc Lu'o'ng K, Nguyễn LTH. The beneficial role of vitamin D in obesity: possible genetic and cell signaling mechanisms. Nutr J 2013; 12:89. [PMID: 23800102 PMCID: PMC3702462 DOI: 10.1186/1475-2891-12-89] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023] Open
Abstract
The prevalence rates of overweight and obesity are considered an important public issue in the United States, and both of these conditions are increasing among both children and adults. There is evidence of aberrations in the vitamin D-endocrine system in obese subjects. Vitamin D deficiency is highly prevalent in patients with obesity, and many studies have demonstrated the significant effect of calcitriol on adipocytes. Genetic studies have provided an opportunity to determine which proteins link vitamin D to obesity pathology, including the vitamin D receptor, toll-like receptors, the renin-angiotensin system, apolipoprotein E, vascular endothelial growth factor, and poly (ADP-ribose) polymerase-1. Vitamin D also exerts its effect on obesity through cell-signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the reduced form of nicotinamide adenine dinucleotide phosphate, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in obesity. The best form of vitamin D for use in the obese individuals is calcitriol because it is the active form of the vitamin D3 metabolite, its receptors are present in adipocytes, and modulates inflammatory cytokine expression.
Collapse
Affiliation(s)
- Khanh vinh quốc Lu'o'ng
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA.
| | | |
Collapse
|
19
|
Long KVQ, Nguyễn LTH. Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Mol Brain 2013; 6:16. [PMID: 23570271 PMCID: PMC3641959 DOI: 10.1186/1756-6606-6-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that there are aberrations in the vitamin D-endocrine system in subjects with amyotrophic lateral sclerosis (ALS). Here, we review the relationship between vitamin D and ALS. Vitamin D deficiency was reported in patients with ALS. Dietary vitamin D3 supplementation improves functional capacity in the G93A transgenic mouse model of ALS. Genetic studies have provided an opportunity to identify the proteins that link vitamin D to ALS pathology, including major histocompatibility complex (MHC) class II molecules, toll-like receptors, poly(ADP-ribose) polymerase-1, heme oxygenase-1, and calcium-binding proteins, as well as the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on ALS through cell-signaling mechanisms, including glutamate, matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in ALS. Further investigation of vitamin D in ALS patients is needed.
Collapse
|
20
|
Vitamin D and death by sunshine. Int J Mol Sci 2013; 14:1964-77. [PMID: 23334476 PMCID: PMC3565359 DOI: 10.3390/ijms14011964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 02/07/2023] Open
Abstract
Exposure to sunlight is the major cause of skin cancer. Ultraviolet radiation (UV) from the sun causes damage to DNA by direct absorption and can cause skin cell death. UV also causes production of reactive oxygen species that may interact with DNA to indirectly cause oxidative DNA damage. UV increases accumulation of p53 in skin cells, which upregulates repair genes but promotes death of irreparably damaged cells. A benefit of sunlight is vitamin D, which is formed following exposure of 7-dehydrocholesterol in skin cells to UV. The relatively inert vitamin D is metabolized to various biologically active compounds, including 1,25-dihydroxyvitamin D3. Therapeutic use of vitamin D compounds has proven beneficial in several cancer types, but more recently these compounds have been shown to prevent UV-induced cell death and DNA damage in human skin cells. Here, we discuss the effects of vitamin D compounds in skin cells that have been exposed to UV. Specifically, we examine the various signaling pathways involved in the vitamin D-induced protection of skin cells from UV.
Collapse
|
21
|
vinh quôc Luong K, Thi Hoàng Nguyên L. Vitamin D and Parkinson's disease. J Neurosci Res 2012; 90:2227-36. [DOI: 10.1002/jnr.23115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
|
22
|
Miodovnik M, Koren R, Ziv E, Ravid A. The inflammatory response of keratinocytes and its modulation by vitamin D: the role of MAPK signaling pathways. J Cell Physiol 2012; 227:2175-83. [PMID: 21792935 DOI: 10.1002/jcp.22951] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hormonal form of vitamin D, calcitriol, and its analogs are known for their beneficial effect in the treatment of inflammatory skin disorders. Keratinocytes play a role in epidermal inflammatory responses invoked by breeching of the epidermal barrier, by infectious agents and by infiltrating immune cells. We studied the role of calcitriol in the initiation of keratinocyte inflammatory response by the viral and injury mimic polyinosinic-polycytidylic acid (poly(I:C)) and in its maintenance by tumor-necrosis-factor α (TNFα) and investigated the role of the mitogen-activated protein kinase cascades in these processes and their regulation by calcitriol. The inflammatory response of human HaCaT keratinocytes to poly(I:C) or TNFα was assessed by measuring mRNA levels of 13 inflammation-related molecules by real-time PCR microarray and by in-depth investigation of the regulation of interleukin 8, intercellular-adhesion-molecule 1, and TNFα expression. We found that while calcitriol had only a minor effect on the keratinocyte response to poly(I:C) and a modest effect on the early response (2 h) to TNFα, it markedly attenuated the later response (16-24 h) to TNFα. The expression of CYP27B1, the enzyme responsible for calcitriol production, was marginally increased by poly(I:C) and markedly by TNFα treatment. This pattern suggests that while allowing the initial keratinocyte inflammatory response to proceed, calcitriol contributes to its timely resolution. Using pharmacological inhibitors we found that while the p38 MAPK and the extracellular signal-regulated kinase have only a minor role, c-Jun N-terminal kinase plays a pivotal role in the induction of the pro-inflammatory genes and its modulation by calcitriol.
Collapse
Affiliation(s)
- Mor Miodovnik
- Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Muñoz-Alonso MJ, Ceballos L, Bretones G, Frade P, León J, Gandarillas A. MYC accelerates p21CIP-induced megakaryocytic differentiation involving early mitosis arrest in leukemia cells. J Cell Physiol 2012; 227:2069-78. [DOI: 10.1002/jcp.22935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Pan X, Kane LA, Van Eyk JE, Coulombe PA. Type I keratin 17 protein is phosphorylated on serine 44 by p90 ribosomal protein S6 kinase 1 (RSK1) in a growth- and stress-dependent fashion. J Biol Chem 2011; 286:42403-42413. [PMID: 22006917 DOI: 10.1074/jbc.m111.302042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratin 17 (K17) is a type I intermediate filament protein that is constitutively expressed in ectoderm-derived epithelial appendages and robustly induced in epidermis following injury, during inflammation, and in chronic diseases such as psoriasis and cancer. Mutations within K17 are responsible for two rare diseases related to ectodermal dysplasias. Studies in K17-null mice uncovered several roles for K17, including structural support, resistance to TNFα-induced apoptosis, regulation of protein synthesis, and modulation of cytokine expression. Yet, little is known about the regulation of K17 protein via post-translational modification. Here, we report that serine 44 in the N-terminal head domain of K17 (K17-Ser(44)) is phosphorylated in response to extracellular stimuli (serum, EGF, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate) that alter skin keratinocyte growth, and to cellular stresses (sorbitol-induced hyperosmotic shock, UV irradiation, and hydrogen peroxide-induced oxidative stress). It also occurs in basaloid skin tumors in situ. Upon its stimulation in skin keratinocytes, K17-Ser(44) phosphorylation is induced rapidly but stays on transiently. The majority of the phosphorylated K17-Ser(44) pool is polymer-bound and is not obviously related to a change in filament organization. The amino acid sequence surrounding K17-Ser(44) matches the consensus for the AGC family of basophilic kinases. We show that p90 RSK1, an AGC kinase involved in the regulation of cell survival and proliferation, phosphorylates K17-Ser(44) in skin keratinocytes. These findings confirm and expand the tight link that has emerged between K17 up-regulation and growth and stress responses in the skin epithelium.
Collapse
Affiliation(s)
- Xiaoou Pan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Lesley A Kane
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Johns Hopkins Bayview Proteomic Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jennifer E Van Eyk
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Johns Hopkins Bayview Proteomic Center, Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.
| |
Collapse
|
25
|
Zeeli T, Langberg M, Rotem C, David M, Koren R, Ravid A. Vitamin D inhibits captopril-induced cell detachment and apoptosis in keratinocytes. Br J Dermatol 2010; 164:62-7. [PMID: 20846310 DOI: 10.1111/j.1365-2133.2010.10044.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Captopril, an angiotensin I-converting enzyme inhibitor, is a commonly prescribed antihypertensive drug. Its cutaneous side-effects include pemphigus vulgaris acantholysis and bullous pemphigoid-like cell-matrix detachment. This medication also triggers apoptosis in human keratinocytes. Calcitriol, the hormonally active vitamin D metabolite, protects keratinocytes from programmed cell death induced by various noxious stimuli. OBJECTIVES To examine if calcitriol protects proliferating keratinocytes from the damage inflicted by captopril. METHODS Autonomously proliferating HaCaT keratinocytes, used as a model for basal layer keratinocytes, were exposed to captopril. Cell detachment was examined visually by light microscopy. Cytotoxicity was assessed by Hoechst 33342 staining and lactate dehydrogenase release. Apoptotic death was assessed by monitoring caspase 3-like activity. RESULTS Cells exposed to captopril detached and became round. This process was accompanied by programmed cell death. From time-dependent monitoring of cell detachment and apoptosis, and examination of pan-caspase inhibitor effects on cell detachment we concluded that cell death is the consequence of cell detachment from the culture plate and not vice versa. Pretreatment with calcitriol significantly attenuated these events. The effects of calcitriol were already evident at 1 nmol L(-1) concentration of the hormone. CONCLUSIONS The results of this study show that calcitriol protects keratinocytes from captopril-induced cell detachment and apoptosis.
Collapse
Affiliation(s)
- T Zeeli
- Department of Dermatology, Rabin Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Bahar-Shany K, Ravid A, Koren R. Upregulation of MMP-9 production by TNFalpha in keratinocytes and its attenuation by vitamin D. J Cell Physiol 2010; 222:729-37. [PMID: 20020446 DOI: 10.1002/jcp.22004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MMP-9, a member of the matrix metalloproteinase family that degrades collagen IV and processes chemokines and cytokines, participates in epidermal remodeling in response to stress and injury. Limited activity of MMP-9 is essential while excessive activity is deleterious to the healing process. Tumor necrosis factor (TNFalpha), a key mediator of cutaneous inflammation, is a powerful inducer of MMP-9. Calcitriol, the hormonally active vitamin D metabolite, and its analogs are known to attenuate epidermal inflammation. We aimed to examine the modulation of MMP-9 by calcitriol in TNFalpha-treated keratinocytes. The immortalized HaCaT keratinocytes were treated with TNFalpha in the absence of exogenous growth factors or active ingredients. MMP-9 production was quantified by gelatin zymography and real-time RT-PCR. Activation of signaling cascades was assessed by western blot analysis and DNA-binding activity of transcription factors was determined by EMSA. Exposure to TNFalpha markedly increased the protein and mRNA levels of MMP-9, while pretreatment with calcitriol dose dependently reduced this effect. Employing specific inhibitors we established that the induction of MMP-9 by TNFalpha was dependent on the activity of the epidermal growth factor receptor, c-Jun-N-terminal kinase (JNK), NFkappaB and extracellular signal-regulated kinase-1/2. The effect of calcitriol was associated with inhibition of JNK activation and reduction of DNA-binding activities of the transcription factors activator protein-1 (AP-1) and NFkappaB following treatment with TNFalpha. By down-regulating MMP-9 levels active vitamin D derivatives may attenuate deleterious effects due to excessive TNFalpha-induced proteolytic activity associated with cutaneous inflammation.
Collapse
Affiliation(s)
- K Bahar-Shany
- Basil and Gerald Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
27
|
Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, Proctor BM, Petty M, Chen Z, Schechtman KB, Bernal-Mizrachi L, Bernal-Mizrachi C. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 2009; 120:687-98. [PMID: 19667238 DOI: 10.1161/circulationaha.109.856070] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death among those with diabetes mellitus. Vitamin D deficiency is associated with an increased risk of cardiovascular disease in this population. To determine the mechanism by which vitamin D deficiency mediates accelerated cardiovascular disease in patients with diabetes mellitus, we investigated the effects of active vitamin D on macrophage cholesterol deposition. METHODS AND RESULTS We obtained macrophages from 76 obese, diabetic, hypertensive patients with vitamin D deficiency (25-hydroxyvitamin D <80 nmol/L; group A) and 4 control groups: obese, diabetic, hypertensive patients with normal vitamin D (group B; n=15); obese, nondiabetic, hypertensive patients with vitamin D deficiency (group C; n=25); and nonobese, nondiabetic, nonhypertensive patients with vitamin D deficiency (group D; n=10) or sufficiency (group E; n=10). Macrophages from the same patients in all groups were cultured in vitamin D-deficient or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] -supplemented media and exposed to modified low-density lipoprotein cholesterol. 1,25(OH)(2)D(3) suppressed foam cell formation by reducing acetylated or oxidized low-density lipoprotein cholesterol uptake in diabetic subjects only. Conversely, deletion of the vitamin D receptor in macrophages from diabetic patients accelerated foam cell formation induced by modified LDL. 1,25(OH)(2)D(3) downregulation of c-Jun N-terminal kinase activation reduced peroxisome proliferated-activated receptor-gamma expression, suppressed CD36 expression, and prevented oxidized low-density lipoprotein-derived cholesterol uptake. In addition, 1,25(OH)(2)D(3) suppression of macrophage endoplasmic reticulum stress improved insulin signaling, downregulated SR-A1 expression, and prevented oxidized and acetylated low-density lipoprotein-derived cholesterol uptake. CONCLUSIONS These results identify reduced vitamin D receptor signaling as a potential mechanism underlying increased foam cell formation and accelerated cardiovascular disease in diabetic subjects.
Collapse
Affiliation(s)
- Jisu Oh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ellis BC, Gattoni-Celli S, Mancia A, Kindy MS. The vitamin D3 transcriptomic response in skin cells derived from the Atlantic bottlenose dolphin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:901-912. [PMID: 19454332 PMCID: PMC3476053 DOI: 10.1016/j.dci.2009.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 05/27/2023]
Abstract
The Atlantic bottlenose dolphin has attracted attention due to the evident impact that environmental stressors have taken on its health. In order to better understand the mechanisms linking environmental health with dolphin health, we have established cell cultures from dolphin skin as in vitro tools for molecular evaluations. The vitamin D3 pathway is one mechanism of interest because of its well established chemopreventative and immunomodulatory properties in terrestrial mammals. On the other hand, little is known of the physiological role of this molecule in aquatic animals. 1,25-dihydroxyvitamin D3 (1,25D3), the bioactive and hormonal form of vitamin D3, exerts its biological function by binding to the vitamin D receptor (VDR), a ligand-activated regulator of gene transcription. Therefore, we investigated the transcriptomic changes induced by 1,25D3 administration in dolphin skin cells. Identification of specific genes activated by 1,25D3 has provided clues to the physiological function of the vitamin D3 pathway in the dolphin. We found that exposure of the cells to 1,25D3 upregulated transactivation of a vitamin D-sensitive promoter. cDNA microarray analysis, using a novel dolphin array, identified specific gene targets within this pathway, and real-time PCR (qPCR) confirmed the enhanced expression of select genes of interest. These transcriptional changes correlated with an increase in VDR levels. This is the first report of the presence and activation of the vitamin D3 pathway in a marine mammal, and our experimental results demonstrate a number of similarities to terrestrial animals. Conservation of this pathway in the Atlantic bottlenose dolphin is consistent with the importance of nonclassic functions of vitamin D3, such as its role in innate immunity, similar to what has been demonstrated in other mammals.
Collapse
Affiliation(s)
- Blake C. Ellis
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC 29425, United States
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Sebastiano Gattoni-Celli
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC 29425, United States
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Annalaura Mancia
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC 29425, United States
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Mark S. Kindy
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC 29425, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
- Ralph H. Johnson VA Medical Center, Charleston, SC 29403, United States
| |
Collapse
|
29
|
Birlea SA, Costin GE, Norris DA. New insights on therapy with vitamin D analogs targeting the intracellular pathways that control repigmentation in human vitiligo. Med Res Rev 2009; 29:514-46. [DOI: 10.1002/med.20146] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Langberg M, Rotem C, Fenig E, Koren R, Ravid A. Vitamin D protects keratinocytes from deleterious effects of ionizing radiation. Br J Dermatol 2009; 160:151-61. [DOI: 10.1111/j.1365-2133.2008.08797.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Zamoner A, Pierozan P, Vidal LF, Lacerda BA, Dos Santos NG, Vanzin CS, Pessoa-Pureur R. Vimentin phosphorylation as a target of cell signaling mechanisms induced by 1alpha,25-dihydroxyvitamin D3 in immature rat testes. Steroids 2008; 73:1400-8. [PMID: 18687349 DOI: 10.1016/j.steroids.2008.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/28/2008] [Accepted: 07/09/2008] [Indexed: 01/16/2023]
Abstract
The effects of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are mainly mediated by nuclear receptors modulating gene expression. However, there are increasing evidences of nongenomic mechanisms of this hormone associated with kinase- and calcium-activated signaling pathways. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of 1,25(OH)(2)D(3) on vimentin phosphorylation in 15-day-old rat testes. Results showed that 1,25(OH)(2)D(3) at concentrations ranging from 1 nM to 1 microM increased vimentin phosphorylation independent of protein synthesis. We also demonstrated that the mechanisms underlying the hormone action involve protein kinase C activation in a phospholipase C-independent manner. Moreover, we showed that the participation of protein kinase A, extracellular regulated protein kinase (ERK), and intra- and extracellular Ca(2+) mediating the effects of 1,25(OH)(2)D(3) on the cytoskeleton. In addition, we investigated the effect of different times of exposure to the hormone on total and phosphoERK1/2 or c-Jun N-terminal kinases 1/2 (JNK1/2) in immature rat testis. Results showed that the total levels of ERK1/2 and JNK1/2 were unaltered from 1 to 15 min exposure to 1,25(OH)(2)D(3). However, the phosphoERK1/2 levels significantly increased at 1 and 5 min 1,25(OH)(2)D(3) treatment. Furthermore, phosphoJNK1 levels were decreased at 10 and 15 min 1,25(OH)(2)D(3) exposure, while phosphoJNK 2 levels were diminished at 5, 10 and 15 min treatment with the hormone. These findings demonstrate that 1,25(OH)(2)D(3) may modulate vimentin phosphorylation through nongenomic Ca(2+)-dependent mechanisms in testis cells.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - anexo. CEP 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Most vertebrates need vitamin D to develop and maintain a healthy mineralized skeleton. However, 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D(3)], the biologically active vitamin D metabolite, exerts a multitude of important physiological effects independent from the regulation of calcium and bone metabolism. We know today that the skin has a unique role in the human body's vitamin D endocrine system. It is the only site of vitamin D photosynthesis, and has therefore a central role in obtaining a sufficient vitamin D status. Additionally, the skin has the capacity to synthesize the biologically active vitamin D metabolite 1,25(OH)(2)D(3), and represents an important target tissue for 1,25(OH)(2)D(3). In keratinocytes and other cell types, 1,25(OH)(2)D(3) regulates growth and differentiation. Consequently, vitamin D analogues have been introduced for the treatment of the hyperproliferative skin disease psoriasis. Recently, sebocytes were identified as 1,25(OH)(2)D(3)-responsive target cells, indicating that vitamin D analogues may be effective in the treatment of acne. Other new functions of vitamin D analogues include profound effects on the immune system as well as in various tissues protection against cancer and other diseases, including autoimmune and infectious diseases. It can be speculated that the investigation of biological effects of vitamin D analogues will lead to new therapeutic applications that, besides cancer prevention, may include the prevention and treatment of infectious as well as of inflammatory skin diseases. Additionally, it can be assumed that dermatological recommendations on sun protection and health campaigns for skin cancer prevention will have to be re-evaluated to guarantee a sufficient vitamin D status.
Collapse
Affiliation(s)
- Jörg Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| |
Collapse
|
33
|
Gupta R, Dixon KM, Deo SS, Holliday CJ, Slater M, Halliday GM, Reeve VE, Mason RS. Photoprotection by 1,25 Dihydroxyvitamin D3 Is Associated with an Increase in p53 and a Decrease in Nitric Oxide Products. J Invest Dermatol 2007; 127:707-15. [PMID: 17170736 DOI: 10.1038/sj.jid.5700597] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin D is produced in skin by UVB radiation (290-320 nm) acting on 7-dehydrocholesterol. The hypotheses that the active vitamin D hormone, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), would increase the survival of skin cells after UV irradiation and that surviving cells after 1,25(OH)2D3 treatment would have no increase in DNA damage were tested. The survival of keratinocytes post-UVR was significantly greater after treatment with 1,25(OH)2D3 compared to vehicle (P<0.01). Significant reductions in thymine dimers (TDs) in surviving keratinocytes after UVR were noted in the presence of 1,25(OH)2D3 (P<0.001). Nuclear p53 protein expression increased after UVR and was significantly higher in keratinocytes treated with 1,25(OH)2D3 (P<0.01), whereas NO products were significantly reduced (P<0.05). Both the increase in nuclear accumulation of p53 protein and reduced formation of nitric oxide products may contribute to the reduction in TDs seen with 1,25(OH)2D3 after UVR. Reductions in numbers of sunburn cells (P<0.01) and in TDs (P<0.05) were observed 24 hours after UVR in skin sections from Skh:hr1 mice treated with 1,25(OH)2D3. These results are consistent with the proposal that the vitamin D system in skin may be part of an intrinsic protective mechanism against UV damage.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Physiology and The Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li QP, Qi X, Pramanik R, Pohl NM, Loesch M, Chen G. Stress-induced c-Jun-dependent Vitamin D receptor (VDR) activation dissects the non-classical VDR pathway from the classical VDR activity. J Biol Chem 2006; 282:1544-51. [PMID: 17121851 DOI: 10.1074/jbc.m604052200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D receptor (VDR) is a ligand-dependent transcription factor that mediates vitamin D(3)-induced gene expression. Our previous work has established that stress MAPK signaling stimulates VDR expression (Qi, X., Pramank, R., Wang, J., Schultz, R. M., Maitra, R. K., Han, J., DeLuca, H. F., and Chen, G. (2002) J. Biol. Chem. 277, 25884-25892) and VDR inhibits cell death in response to p38 MAPK activation (Qi, X., Tang, J., Pramanik, R., Schultz, R. M., Shirasawa, S., Sasazuki, T., Han, J., and Chen, G. (2004) J. Biol. Chem. 279, 22138-22144). Here we show that c-Jun is essential for VDR expression and VDR in turn inhibits c-Jun-dependent cell death by non-classical mechanisms. In response to stress c-Jun is recruited to the Vdr promoter before VDR protein expression is induced. The necessary and sufficient role of c-Jun in VDR expression was established by the fact that c-Jun knock-out decreases VDR expression, whereas c-Jun restoration recovers its activity. Existence of the non-classical VDR pathway was suggested by a requirement of both c-Jun and VDR in stress-induced VDR activity and further demonstrated by VDR inhibiting c-Jun-dependent cell death independent of its classical transcriptional activity and independent of vitamin D(3). c-Jun is also required for vitamin D(3)-induced classical VDR transcriptional activity by a mechanism likely involving physical interactions between c-Jun and VDR proteins. These results together reveal a non-classical mechanism by which VDR acts as a c-Jun/AP-1 target gene to modify c-Jun activity in stress response through increased protein expression independent of classical transcriptional regulations.
Collapse
Affiliation(s)
- Qing-Ping Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nonn L, Peng L, Feldman D, Peehl DM. Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res 2006; 66:4516-24. [PMID: 16618780 DOI: 10.1158/0008-5472.can-05-3796] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although numerous studies have implicated vitamin D in preventing prostate cancer, the underlying mechanism(s) remains unclear. Using normal human prostatic epithelial cells, we examined the role of mitogen-activated protein kinase phosphatase 5 (MKP5) in mediating cancer preventive activities of vitamin D. Up-regulation of MKP5 mRNA by 1,25-dihydroxyvitamin-D3 (1,25D) was dependent on the vitamin D receptor. We also identified a putative positive vitamin D response element within the MKP5 promoter that associated with the vitamin D receptor following 1,25D treatment. MKP5 dephosphorylates/inactivates the stress-activated protein kinase p38. Treatment of prostate cells with 1,25D inhibited p38 phosphorylation, and MKP5 small interfering RNA blocked this effect. Activation of p38 and downstream production of interleukin 6 (IL-6) are proinflammatory. Inflammation and IL-6 overexpression have been implicated in the initiation and progression of prostate cancer. 1,25D pretreatment inhibited both UV- and tumor necrosis factor alpha-stimulated IL-6 production in normal cells via p38 inhibition. Consistent with inhibition of p38, 1,25D decreased UV-stimulated IL-6 mRNA stabilization. The ability of 1,25D to up-regulate MKP5 was maintained in primary prostatic adenocarcinoma cells but was absent in metastases-derived prostate cancer cell lines. The inability of 1,25D to regulate MKP5 in the metastasis-derived cancer cells suggests there may be selective pressure to eliminate key tumor suppressor functions of vitamin D during cancer progression. These studies reveal MKP5 as a mediator of p38 inactivation and decreased IL-6 expression by 1,25D in primary prostatic cultures of normal and adenocarcinoma cells, implicating decreased prostatic inflammation as a potential mechanism for prostate cancer prevention by 1,25D.
Collapse
Affiliation(s)
- Larisa Nonn
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305-5118, USA
| | | | | | | |
Collapse
|
36
|
Diker-Cohen T, Koren R, Ravid A. Programmed cell death of stressed keratinocytes and its inhibition by vitamin D: The role of death and survival signaling pathways. Apoptosis 2006; 11:519-34. [PMID: 16532377 DOI: 10.1007/s10495-006-5115-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermis is confronted with multiple environmental and pathophysiological stresses. This study shows that TNFalpha, oxidative stress, hyperosmotic and heat shock induced both caspase-dependent and independent cell death in human HaCaT keratinocytes. The hormonal form of vitamin D, 1,25(OH)2D3, which is an autocrine hormone in the epidermis, protected the cells from all the examined stresses and pathways leading to cell death. We aimed to define the signaling pathways that determine the life-death balance of stressed keratinocytes and participate in their protection by 1,25(OH)2D3. As assessed by employing specific inhibitors, the survival pathways mediated by the EGF receptor, ERK, PI-3K or Src kinase, or basal transcriptional activity are important for unstressed cell survival. However, only the EGF receptor, PI-3K and the Src kinase pathways mediate the survival of stressed cells in a stimulus-specific manner. Inhibition of the p38 and/or the JNK death pathways reduced caspase activation induced by oxidative stress, hyperosmotic shock and TNFalpha. The protective effect of 1,25(OH)2D3 was not mediated by the examined survival pathways. 1,25(OH)2D3 inhibited the stress-induced activation of p38 and JNK. Since mimicking this effect by pharmacological inhibition resulted in the attenuation of caspase activation, we infer that these pathways are involved in keratinocyte protection by 1,25(OH)2D3.
Collapse
Affiliation(s)
- T Diker-Cohen
- Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
37
|
Obradovic D, Gronemeyer H, Lutz B, Rein T. Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem 2006; 96:500-9. [PMID: 16336217 DOI: 10.1111/j.1471-4159.2005.03579.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is growing evidence for a role of vitamin D3 signalling in the brain. In this study, we investigated the influence of vitamin D3, in combination with glucocorticoids, on differentiation of the hippocampal progenitor line HIB5, as well as survival of rat primary hippocampal cells. In HIB5, pre-treatment with dexamethasone (Dex) alone inhibited neurite outgrowth and abolished activation of the mitogen-activated protein kinase (MAPK) pathway during platelet-derived growth factor (PDGF)-induced differentiation, consistent with previous findings. Interestingly, pre-treating HIB5 with vitamin D3 significantly reduced these effects of Dex and, in addition, lowered the transactivational function of the glucocorticoid receptor (GR) in transient reporter gene assays. A further impact of vitamin D3 on glucocorticoid effects was observed in a rat primary hippocampal culture known to be particularly sensitive to prolonged GR activation. In this model, Dex induced considerable cell death after 72 h of exposure in vitro. However, 24 h of pre-treatment with low doses of vitamin D3 substantially reduced the degree of Dex-induced apoptosis in primary hippocampal cells. Taken together, our experiments demonstrate a cross-talk between vitamin D3 and glucocorticoids in two hippocampal models, a feature that may have important implications in disorders with dysregulated glucocorticoid signalling, including major depression.
Collapse
|
38
|
De Haes P, Garmyn M, Carmeliet G, Degreef H, Vantieghem K, Bouillon R, Segaert S. Molecular pathways involved in the anti-apoptotic effect of 1,25-dihydroxyvitamin D3 in primary human keratinocytes. J Cell Biochem 2005; 93:951-67. [PMID: 15389877 DOI: 10.1002/jcb.20227] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against ultraviolet (UV)B-induced apoptosis. Here, we confirmed the anti-apoptotic effect of 1,25(OH)2D3 in keratinocytes, using cisplatin and doxorubicin as apoptotic triggers. We further showed that 1,25(OH)2D3 activates two survival pathways in keratinocytes: the MEK/extracellular signal regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. Activation of ERK and Akt by 1,25(OH)2D3 was transient, required a minimal dose of 10(-9) M and could be blocked by actinomycin D and cycloheximide. Moreover, inhibition of Akt or ERK activity with respectively a PI-3K inhibitor (LY294002) or MEK inhibitors (PD98059, UO126), partially or totally suppressed the anti-apoptotic capacity of 1,25(OH)2D3. Finally, 1,25(OH)2D3 changed the expression of different apoptosis regulators belonging to the Bcl-2 family. Indeed, 1,25(OH)2D3 treatment increased levels of the anti-apoptotic protein Bcl-2 and decreased levels of the pro-apoptotic proteins Bax and Bad in a time- and dose-dependent way. Induction of Bcl-2 by 1,25(OH)2D3 was further shown to be mediated by ERK and, to a lesser extent, by Akt. In conclusion, 1,25(OH)2D3 clearly protects keratinocytes against apoptosis (1) by activating the MEK/ERK and the PI-3K/Akt survival pathways and (2) by increasing the Bcl-2 to Bax and Bad ratio.
Collapse
Affiliation(s)
- Petra De Haes
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Boland R, Buitrago C, De Boland AR. Modulation of tyrosine phosphorylation signalling pathways by 1alpha,25(OH)2-vitamin D3. Trends Endocrinol Metab 2005; 16:280-7. [PMID: 16002300 DOI: 10.1016/j.tem.2005.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/11/2005] [Accepted: 06/23/2005] [Indexed: 12/15/2022]
Abstract
Hormonally active vitamin D(3), 1alpha,25(OH)(2)D(3), interacts with the classic vitamin D nuclear receptor that regulates gene transcription and with a putative cell membrane receptor that mediates rapid biological responses. 1alpha,25(OH)(2)D(3) actions on target tissues regulate: mineral metabolism and intracellular Ca(2+); protein kinase cascades leading to cell proliferation, differentiation and apoptosis; muscle growth and contractility; and the immune system. There is evidence for underlying 1alpha,25(OH)(2)D(3)-mediated protein tyrosine phosphorylation signalling in bone, intestine, muscle, epidermal and cancer cells. Extracellular-signal-regulated kinases-1/2, p38 and/or c-jun N-terminal kinase pathways play important roles in mediating 1alpha,25(OH)(2)D(3) actions. Studies to elucidate key regulatory metabolic steps and crosstalk sites in these pathways would enhance our understanding of the significance of tyrosine phosphorylation cascades in normal 1alpha,25(OH)(2)D(3) physiology, pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Ricardo Boland
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, (8000) Bahía Blanca, Argentina.
| | | | | |
Collapse
|
40
|
Gauzzi MC, Purificato C, Donato K, Jin Y, Wang L, Daniel KC, Maghazachi AA, Belardelli F, Adorini L, Gessani S. Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. THE JOURNAL OF IMMUNOLOGY 2005; 174:270-6. [PMID: 15611249 DOI: 10.4049/jimmunol.174.1.270] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) generated by a single-step exposure of human monocytes to type I IFN and GM-CSF (IFN-DCs) are endowed with potent immunostimulatory activities and a distinctive migratory response to specific chemokines. In this study, we evaluated the effects of 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the biologically active metabolite of vitamin D(3), on the DC differentiation/activation induced by type I IFN. We found that 1,25(OH)(2)D(3) prevented the generation of IFN-DCs when added to freshly isolated monocytes, and was capable of redirecting already differentiated IFN-DCs toward a more immature stage, as revealed by their immunophenotype, reduced allostimulatory activity, and impaired LPS-induced production of Th1-polarizing cytokines. Control and 1,25(OH)(2)D(3)-treated IFN-DCs exhibited a similar expression of vitamin D receptor, as well as comparable cell death rates. Furthermore, the chemotactic response of IFN-DCs to CCL4 and CCL19 was markedly reduced or completely abrogated by 1,25(OH)(2)D(3). Despite these changes in the IFN-DC migratory behavior, the expression of CCR5 and CCR7 and the calcium fluxes triggered by CCL4 and CCL19 were not affected. These findings indicate that, in this innovative single-step DC generation model from monocytes, the suppressive effect of 1,25(OH)(2)D(3) is associated with a potent impairment of DC migration in response to inflammatory and lymph node-homing chemokines, thus unraveling a novel mechanism involved in 1,25(OH)(2)D(3)-mediated immunomodulation.
Collapse
Affiliation(s)
- Maria Cristina Gauzzi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Danilenko M, Studzinski GP. Enhancement by other compounds of the anti-cancer activity of vitamin D(3) and its analogs. Exp Cell Res 2004; 298:339-58. [PMID: 15265684 DOI: 10.1016/j.yexcr.2004.04.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 04/20/2004] [Indexed: 12/15/2022]
Abstract
Differentiation therapy holds promise as an alternative to cytotoxic drug therapy of cancer. Among compounds under scrutiny for this purpose is the physiologically active form of vitamin D(3), 1,25-dihydroxyvitamin D(3), and its chemically modified derivatives. However, the propensity of vitamin D(3) and its analogs to increase the levels of serum calcium has so far precluded their use in cancer patients except for limited clinical trials. This article summarizes the range of compounds that have been shown to increase the differentiation-inducing and antiproliferative activities of vitamin D(3) and its analogs, and discusses the possible mechanistic basis for this synergy in several selected combinations. The agents discussed include those that have differentiation-inducing activity of their own that is increased by combination with vitamin D(3) or analogs, such as retinoids or transforming growth factor-beta and plant-derived compounds and antioxidants, such as curcumin and carnosic acid. Among other compounds discussed here are dexamethasone, nonsteroidal anti-inflammatory drugs, and inhibitors of cytochrome P450 enzymes, for example, ketoconazole. Thus, recent data illustrate that there are extensive, but largely unexplored, opportunities to develop combinatorial, differentiation-based approaches to chemoprevention and chemotherapy of human cancer.
Collapse
Affiliation(s)
- Michael Danilenko
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
42
|
Peehl DM, Shinghal R, Nonn L, Seto E, Krishnan AV, Brooks JD, Feldman D. Molecular activity of 1,25-dihydroxyvitamin D3 in primary cultures of human prostatic epithelial cells revealed by cDNA microarray analysis. J Steroid Biochem Mol Biol 2004; 92:131-41. [PMID: 15555907 DOI: 10.1016/j.jsbmb.2004.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 07/09/2004] [Indexed: 11/18/2022]
Abstract
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] exerts anti-proliferative, differentiating and apoptotic effects on prostatic cells. These activities, in addition to epidemiologic findings that link Vitamin D to prostate cancer risk, support the use of 1,25(OH)(2)D(3) for prevention or therapy of prostate cancer. The molecular mechanisms by which 1,25(OH)(2)D(3) exerts antitumor effects on prostatic cells are not well-defined. In addition, there is heterogeneity among the responses of various prostate cell lines and primary cultures to 1,25(OH)(2)D(3) with regard to growth inhibition, differentiation and apoptosis. To understand the basis of these differential responses and to develop a better model of Vitamin D action in the prostate, we performed cDNA microarray analyses of primary cultures of normal and malignant human prostatic epithelial cells, treated with 50 nM of 1,25(OH)(2)D(3) for 6 and 24 h. CYP24 (25-hydroxyvitamin D(3)-24-hydroxylase) was the most highly upregulated gene. Significant and early upregulation of dual specificity phosphatase 10 (DUSP10), validated in five additional primary cultures, points to inhibition of members of the mitogen-activated protein kinase (MAPK) superfamily as a key event mediating activity of 1,25(OH)(2)D(3) in prostatic epithelial cells. The functions of other regulated genes suggest protection by 1,25(OH)(2)D(3) from oxidative stress. Overall, these results provide new insights into the molecular basis of antitumor activities of Vitamin D in prostate cells.
Collapse
Affiliation(s)
- Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tetich M, Kutner A, Leskiewicz M, Budziszewska B, Lasoń W. Neuroprotective effects of (24R)-1,24-dihydroxycholecalciferol in human neuroblastoma SH-SY5Y cell line. J Steroid Biochem Mol Biol 2004; 89-90:365-70. [PMID: 15225802 DOI: 10.1016/j.jsbmb.2004.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The active form of Vitamin D(3) has been reported to prevent neuronal damage caused by a variety of insults, however, it may also induce undesirable hypercalcemic effects. In the present study, we evaluated effects of (24R)-1,24-dihydroxycholecalciferol (PRI-2191) on hydrogen peroxide- and excitatory amino acid-induced neuronal damage in human neuroblastoma (SH-SY5Y) cell line. Exposure of SH-SY5Y cells to N-methyl-d-aspartate (NMDA; 5mM), kainate (0.2mM) and hydrogen peroxide (0.1-1mM) significantly enhanced lactate dehydrogenase release. Furthermore, the neurotoxic effects of hydrogen peroxide was dependent on c-Jun N-terminal kinase (JNK)- and p38- mitogen-activated protein kinase (MAPK) activity. Both secosteroids at nanomolar concentrations inhibited neuronal damage, but their efficacy varied depending on the toxic agent. PRI-2191 was equipotent as 1alpha,25-dihydroxyVitamin D(3) in protecting SH-SY5Ycells against NMDA toxicity, and had stronger effect against hydrogen peroxide-induced damage, but was less efficient against kainate-induced injury. The obtained results suggest potential usefulness of PRI 2191 in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- M Tetich
- Department of Endocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smêtna Street, 31-343 Kraków, Poland
| | | | | | | | | |
Collapse
|
44
|
De Haes P, Garmyn M, Degreef H, Vantieghem K, Bouillon R, Segaert S. 1,25-Dihydroxyvitamin D3 inhibits ultraviolet B-induced apoptosis, Jun kinase activation, and interleukin-6 production in primary human keratinocytes. J Cell Biochem 2003; 89:663-73. [PMID: 12858333 DOI: 10.1002/jcb.10540] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the capacity of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] to protect human keratinocytes against the hazardous effects of ultraviolet B (UVB)-irradiation, recognized as the most important etiological factor in the development of skin cancer. Cytoprotective effects of 1,25(OH)(2)D(3) on UVB-irradiated keratinocytes were seen morphologically and quantified using a colorimetric survival assay. Moreover, 1,25(OH)(2)D(3) suppressed UVB-induced apoptotic cell death. An ELISA, detecting DNA-fragmentation, demonstrated that pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM for 24 h reduced UVB-stimulated apoptosis by 55-70%. This suppression required pharmacological concentrations 1,25(OH)(2)D(3) and a preincubation period of several hours. In addition, 1,25(OH)(2)D(3) also inhibited mitochondrial cytochrome c release (90%), a hallmark event of UVB-induced apoptosis. Furthermore, we demonstrated that 1,25(OH)(2)D(3) reduced two important mediators of the UV-response, namely, c-Jun-NH(2)-terminal kinase (JNK) activation and interleukin-6 (IL-6) production. As shown by Western blotting, pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM diminished UVB-stimulated JNK activation with more than 30%. 1,25(OH)(2)D(3) treatment (1 microM) reduced UVB-induced IL-6 mRNA expression and secretion with 75-90%. Taken together, these findings suggest the existence of a photoprotective effect of active vitamin D(3) and create new perspectives for the pharmacological use of active vitamin D compounds in the prevention of UVB-induced skin damage and carcinogenesis.
Collapse
Affiliation(s)
- Petra De Haes
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Gasthuisberg, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Gamady A, Koren R, Ron D, Liberman UA, Ravid A. Vitamin D enhances mitogenesis mediated by keratinocyte growth factor receptor in keratinocytes. J Cell Biochem 2003; 89:440-9. [PMID: 12761878 DOI: 10.1002/jcb.10508] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and keratinocyte growth factor (KGF) belong to the network of autocrine and paracrine mediators in the skin. Both were shown to modulate keratinocyte proliferation, to reverse epidermal atrophy, to increase wound healing, and to reduce chemotherapy-induced alopecia. The overlap between their activities may suggest that vitamin D exerts some of its actions by modulation of KGF activities in the skin. This notion was examined by using HaCaT keratinocytes cultured in serum-free medium in the absence of exogenous growth factors and in the presence of the EGF receptor tyrosine kinase inhibitor AG 1478 that blocks their autonomous proliferation. These cells could be stimulated to proliferate by different fibroblast growth factors (FGFs). The relative mitogenic efficacy of basic FGF, acidic FGF, or KGF was in correlation with their affinities for the KGF receptor (KGFR). Forty-eight hour co-treatment with 1,25(OH)(2)D(3) enhanced KGFR-mediated cell proliferation in a dose dependent manner. Both ERK1/2 and c-Jun N-terminal kinase (JNK) were activated by the FGFs. Treatment with 1,25(OH)(2)D(3) increased the activation of ERK but reduced the activation of JNK. Treatment with 1,25(OH)(2)D(3) increased the levels of KGFR in the presence but not in the absence of KGF, probably due to inhibition of ligand-induced receptor degradation. Inhibition of protein kinase C with bisindolylmaleimide did not interfere with the effect of 1,25(OH)(2)D(3) on KGFR-mediated ERK activation. Our results support the notion that the paracrine KGF-KGFR system in the skin can act in concert with the autocrine vitamin D system in keratinocytes to promote keratinocyte proliferation and survival under situations of stress and injury.
Collapse
Affiliation(s)
- Anat Gamady
- The Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Petah-Tikva, Israel
| | | | | | | | | |
Collapse
|
46
|
Eckert RL, Efimova T, Balasubramanian S, Crish JF, Bone F, Dashti S. p38 Mitogen-activated protein kinases on the body surface--a function for p38 delta. J Invest Dermatol 2003; 120:823-8. [PMID: 12713588 DOI: 10.1046/j.1523-1747.2003.12120.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The p38 family of mitogen-activated protein kinases includes p38 alpha (SAPK2a, CSBP), p38 beta (SAPK2b), p38 delta (SAPK4), and p38 gamma (SAPK3/ERK6). p38 alpha and p38 beta are widely expressed p38 isoforms that are involved in regulation of cell proliferation, differentiation, development, and response to stress. Relatively less is known regarding the function of the p38 delta isoform. In this review, we discuss the role of the p38 alpha, p38 beta, and p38 gamma isoforms and then present recent findings that define a role for p38 delta as a regulator of differentiation-dependent gene expression in keratinocytes.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | |
Collapse
|