1
|
Ardicli S, Ardicli O, Yazici D, Pat Y, Babayev H, Xiong P, Zeyneloglu C, Garcia-Sanchez A, Shi LL, Viscardi OG, Skolnick S, Ogulur I, Dhir R, Jutel M, Agache I, Janda J, Pali-Schöll I, Nadeau KC, Akdis M, Akdis CA. Epithelial barrier dysfunction and associated diseases in companion animals: Differences and similarities between humans and animals and research needs. Allergy 2024. [PMID: 39417247 DOI: 10.1111/all.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Since the 1960s, more than 350,000 new chemicals have been introduced into the lives of humans and domestic animals. Many of them have become part of modern life and some are affecting nature as pollutants. Yet, our comprehension of their potential health risks for both humans and animals remains partial. The "epithelial barrier theory" suggests that genetic predisposition and exposure to diverse factors damaging the epithelial barriers contribute to the emergence of allergic and autoimmune conditions. Impaired epithelial barriers, microbial dysbiosis, and tissue inflammation have been observed in a high number of mucosal inflammatory, autoimmune and neuropsychiatric diseases, many of which showed increased prevalence in the last decades. Pets, especially cats and dogs, share living spaces with humans and are exposed to household cleaners, personal care products, air pollutants, and microplastics. The utilisation of cosmetic products and food additives for pets is on the rise, unfortunately, accompanied by less rigorous safety regulations than those governing human products. In this review, we explore the implications of disruptions in epithelial barriers on the well-being of companion animals, drawing comparisons with humans, and endeavour to elucidate the spectrum of diseases that afflict them. In addition, future research areas with the interconnectedness of human, animal, and environmental well-being are highlighted in line with the "One Health" concept.
Collapse
Affiliation(s)
- Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Türkiye
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Peng Xiong
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Can Zeyneloglu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Asuncion Garcia-Sanchez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Biomedical & Diagnostic Sciences, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - Li-Li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SEED Inc. Co., Los Angeles, California, USA
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Jozef Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine and Medical University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
2
|
Nakamura M, Takahashi T, Matsui H, Takahashi S, Murayama SY, Suzuki H, Tsuchimoto K. New pharmaceutical treatment of gastric MALT lymphoma: anti-angiogenesis treatment using VEGF receptor antibodies and celecoxib. Curr Pharm Des 2015; 20:1097-103. [PMID: 23782142 PMCID: PMC4260359 DOI: 10.2174/13816128113199990420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/07/2013] [Indexed: 01/09/2023]
Abstract
In addition to eradication of Helicobacter pylori, chemotherapy with anticancer agents, and radiation therapy, the treatment with molecular target drugs including rituximab, a CD20 antagonist, is one of the promising new regimens. The mucosa-associated lymphoid tissue (MALT) lymphoma is histologically characterized by rich distribution of the microvascular network consisting of the immature capillaries, lymphatics and venules, and this microvascular network could be the target of the new pharmacotherapy in addition to the direct action on the accumulated B lymphocytes. We have established the animal model of the gastric MALT lymphoma by the Helicobacter heilmannii (H. heilmannii) peroral infection of C57BL/6 mice. The disease induced by this model is very similar to the human counterpart, because of the lymphoepithelial lesion characteristic of the human MALT lymphoma as well as the rich vascularization and localization of vascular endothelial growth factor (VEGF) and its receptors, Flt-1, Flk-1 and Flt-4. By administering VEGF receptor antibodies or celecoxib, one of the cyclooxygenase 2 inhibitors, we were able to induce a significant decrease in the size of the tumor and the apoptotic changes of the endothelial cells of the microvascular network. These antiangiogenic strategies were suggested to be candidates for the new pharmacological treatment of gastric MALT lymphoma, when other treatments are not effective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kanji Tsuchimoto
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108- 8641, Japan.
| |
Collapse
|
3
|
Nakamura M, Matsui H, Takahashi T, Ogawa S, Tamura R, Murayama SY, Takahashi S, Tsuchimoto K. Suppression of lymphangiogenesis induced by Flt-4 antibody in gastric low-grade mucosa-associated lymphoid tissue lymphoma by Helicobacter heilmannii infection. J Gastroenterol Hepatol 2010; 25 Suppl 1:S1-6. [PMID: 20586849 DOI: 10.1111/j.1440-1746.2010.06230.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Our recent study revealed that per oral infection with Helicobacter heilmannii induced low-grade mucosa-associated lymphoid tissue (MALT) lymphoma in the gastric fundus of C57BL/6 mice after a period of 6 months, although the pathophysiological mechanism of lymphoma expansion remains to be clarified. The present study was undertaken to elucidate the interaction of this tumor with angiogenesis and lymphangiogenesis. In addition, the effect of Flt-4 antibodies on lymphoma expansion was investigated. METHODS C57BL/6 female mice infected with H. heilmannii for 3 months were used in the experiments. Localization of vascular endothelial growth factor C (VEGF-C) and Flt-4 immunoreactivity were detected by indirect immunohistochemical methods. Localization of lymphatic and vascular endothelial cells was investigated by localization of prox-1. In addition, Flt-4 antibody with and without Flt-1 or Flk-1 antibodies was administered i.p. to clarify their effects on tumor size. RESULTS MALT lymphoma has a rich microvascular network consisting of immature capillaries, lymphatics and venules. By immunohistochemical analysis, prox-1 immunoreactivity was observed mostly in the marginal area of the lymphoma, where VEGF-C and Flt-4 immunoreactivities were also seen. Stereomicroscopic study revealed that administration of Flt-4 and Flt-1 antibodies significantly reduced the surface area of the lymphoma in the mouse stomach. CONCLUSION A VEGF-C-mediated mechanism plays an important role in the expansion of MALT lymphoma and the administration of VEGF receptor antibodies had a suppressive effect on tumor growth.
Collapse
Affiliation(s)
- Masahiko Nakamura
- Division of Pathophysiolgy, Research and Education Center for Clinical Pharmacy, School of Pharmaceutical Sciences, Mitaka, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Shimoda H, Kato S. A Model for Lymphatic Regeneration in Tissue Repair of the Intestinal Muscle Coat. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:73-108. [PMID: 16861064 DOI: 10.1016/s0074-7696(06)50003-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The gastrointestinal lymphatic system, which comprises a network of thin-walled vessels, is essential for the regulation of tissue fluid volume, immune function, and transport of fatty nutrients. The identification of specific lymphatic endothelial markers has facilitated analyses of lymphatic organization and lymphangiogenesis during individual development and tissue repair. The intestinal muscle coat producing motor activity develops a dense maze-like lymphatic network by vascular sprouting consisting of thin lymphatic endothelial projections and splitting of the vessels. The lymphatic regeneration in the tissue repair of the intestinal muscle coat is essentially attributable to sprouting from preexisting lymphatics, and it progresses vigorously with vascular maturation. The regrowing lymphatic endothelial cells exhibit structural changes indicating a high migratory potential and a close association with regenerating stromal cells. The upregulation of VEGF-C, a specific lymphangiogenic molecule, in a subpopulation of the stromal cells probably contributes to lymphatic regeneration by activating its receptor, VEGFR-3, on the regrowing lymphatic endothelial cells.
Collapse
Affiliation(s)
- Hiroshi Shimoda
- Department of Anatomy, Biology and Medicine, Faculty of Medicine, Oita University 1-1, Idaigaoka, Hasama-machi, Oita 879-5593, Japan
| | | |
Collapse
|
6
|
Ji RC, Kato S. Enzyme-histochemical study on postnatal development of rat stomach lymphatic vessels. Microvasc Res 1997; 54:1-12. [PMID: 9245639 DOI: 10.1006/mvre.1997.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Postnatal development of rat gastric lymphatics was studied by an enzyme-histochemical method to elucidate the morphological changes of lymphatics and their relationship to maturation and function, especially in the glandular portion. The significant features of 5'-Nase-positive lymphatics in distribution and structure were examined in different stages (within 24 hr, 4-21 days, and 2 months). Lymphatics in the greater curvature and anterior wall grew much slower than those in the lesser curvature and posterior wall of the stomach in newborn and infant rats. Lymphatic islands isolated from the primary lymphatic networks in the submucosa and subserosa underwent a morphological change during this early period. This is considered one of the basic steps in lymphatic development. Occurrence of lymphatic networks in the deep lamina propria indicates that development in the gastric wall is well characterized from Day 10. With further growth and modification of lymphatics, the networks in the different layers formed an extensive communication network and many lymphatic valves were found in the submucosa and subserosa. Pinocytotic vesicles, open junctions, and intraendothelial channels were frequently detected in the mucosal and submucosal lymphatic networks of the corpus-antrum and antrum-duodenum divisional zones in the adult rats. These findings suggest that developing lymphatics in the rat stomach may represent rapidly growing tissue not only with high 5'-Nase activity but also with high adaptability for future physiological demands.
Collapse
Affiliation(s)
- R C Ji
- Department of Anatomy, Oita Medical University, Oita, 879-55, Japan
| | | |
Collapse
|