1
|
Câmara AS, Kubalová I, Schubert V. Helical chromonema coiling is conserved in eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1284-1300. [PMID: 37840457 DOI: 10.1111/tpj.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes.
Collapse
Affiliation(s)
- Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466, Seeland, Germany
| |
Collapse
|
2
|
Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues. Semin Cell Dev Biol 2017; 73:125-131. [PMID: 28939037 DOI: 10.1016/j.semcdb.2017.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023]
Abstract
Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions.
Collapse
|
3
|
Inaga S, Kato M, Hirashima S, Munemura C, Okada S, Kameie T, Katsumoto T, Nakane H, Tanaka K, Hayashi K, Naguro T. Rapid three-dimensional analysis of renal biopsy sections by low vacuum scanning electron microscopy. ACTA ACUST UNITED AC 2013; 73:113-25. [PMID: 22572179 DOI: 10.1679/aohc.73.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal biopsy paraffin sections were examined by low vacuum scanning electron microscopy (LVSEM) in the backscattered electron (BSE) mode, a novel method for rapid pathological analysis which allowed detailed and efficient three-dimensional observations of glomeruli. Renal samples that had been already diagnosed by light microscopy (LM) as exhibiting IgA nephropathy, minor glomerular abnormalities, and membranous glomerulonephritis (GN) were rapidly processed in the present study. Unstained paraffin sections of biopsy samples on glass slides were deparaffinized, stained with platinum blue (Pt-blue) or periodic acid silver-methenamine (PAM), and directly observed with a LVSEM. Overviews of whole sections and detailed observations of individual glomeruli were immediately performed at arbitrary magnifications between ×50 to ×18,000. Cut surface views and surface views of glomeruli were demonstrated at the same time. On Pt-blue-stained sections, podocytes, endothelia, mesangium, and glomerular basement membranes (GBMs) could be distinguished due to the different yields of BSE signals, and pathological features were investigated in every sample. The abnormal surface appearances of podocytes with foot processes and the varying thicknesses of GBM were revealed three-dimensionally, features difficult to observe under LM and transmission electron microscopy. PAM-positive GBM alterations in membranous GN were distinctly visualized through overlying cells without cell removal under LVSEM at high magnification. Not only prominent spike formation but also slight protrusions were clearly revealed in the side views of GBM. Crater-like or hole-like structures were shown in the en face views of GBM. Accordingly, LVSEM is expected to provide a novel approach to the pathological diagnosis of human glomerular diseases using conventional renal biopsy sections.
Collapse
Affiliation(s)
- Sumire Inaga
- Division of Genome Morphology, Department of Functional, Morphological and Regulatory Science, Faculty of Medicine, Tottori University, Nishi-cho, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Application of low-vacuum scanning electron microscopy for renal biopsy specimens. Pathol Res Pract 2012; 208:503-9. [PMID: 22795691 DOI: 10.1016/j.prp.2012.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/26/2012] [Accepted: 05/03/2012] [Indexed: 11/22/2022]
Abstract
Low-vacuum scanning electron microscopy (LV-SEM) has been developed which enables the observation of soft, moist, and electrically insulating materials without any pretreatment unlike conventional scanning electron microscopy, in which samples must be solid, dry and usually electrically conductive. The purpose of this study was to assess the usefulness of LV-SEM for renal biopsy specimens. We analyzed 20 renal biopsy samples obtained for diagnostic purposes. The sections were stained with periodic acid methenamine silver to enhance the contrast, and subsequently examined by LV-SEM. LV-SEM showed a precise and fine structure of the glomerulus in both formalin fixed paraffin and glutaraldehyde-osmium tetroxide-fixed epoxy resin sections up to 10,000-fold magnification. The spike formation on the basement membrane was clearly observed in the membranous nephropathy samples. Similarly to transmission electron microscopy, electron dense deposits were observed in the epoxy resin sections of the IgA nephropathy and membranous nephropathy samples. LV-SEM could accurately show various glomerular lesions at high magnification after a simple and rapid processing of the samples. We consider that this is a novel and useful diagnostic tool for renal pathologies.
Collapse
|
5
|
Dwiranti A, Lin L, Mochizuki E, Kuwabata S, Takaoka A, Uchiyama S, Fukui K. Chromosome observation by scanning electron microscopy using ionic liquid. Microsc Res Tech 2012; 75:1113-8. [DOI: 10.1002/jemt.22038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 02/16/2012] [Indexed: 11/10/2022]
|
6
|
Inaga S, Hirashima S, Tanaka K, Katsumoto T, Kameie T, Nakane H, Naguro T. Low vacuum scanning electron microscopy for paraffin sections utilizing the differential stainability of cells and tissues with platinum blue. ACTA ACUST UNITED AC 2010; 72:101-6. [PMID: 20009346 DOI: 10.1679/aohc.72.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study introduces a novel method for the direct observation of histological paraffin sections by low vacuum scanning electron microscopy (LVSEM) with platinum blue (Pt-blue) treatment. Pt-blue was applied not only as a backscattered electron (BSE) signal enhancer but also as a histologically specific stain. In this method, paraffin sections of the rat tongue prepared for conventional light microscopy (LM) were stained on glass slides with a Pt-blue staining solution (pH 9) and observed in a LVSEM using BSE detector. Under LVSEM, overviews of whole sections as well as three-dimensional detailed observations of individual cells and tissues could be easily made at magnifications from x40 to x10,000. Each kind of cell and tissue observed in the section could be clearly distinguished due to the different yields of BSE signals, which depended on the surface structures and different affinities to Pt-blue. Thus, we roughly classified cellular and tissue components into three groups according to the staining intensity of Pt-blue observed by LM and LVSEM: 1) a strongly stained (deep blue by LM and brightest by LVSEM) group which included epithelial tissue, endothelium and mast cells; 2) a moderately stained (light blue and bright) group which included muscular tissue and nervous tissue; 3) an unstained or weakly stained (colorless and dark) group which included elastic fibers and collagen fibers. We expect that this method will prove useful for the three-dimensional direct observation of histological paraffin sections of various tissues by LVSEM with higher resolutions than LM.
Collapse
Affiliation(s)
- Sumire Inaga
- Division of Genome Morphology, Department of Functional, Morphological and Regulatory Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The present study introduces the principle of atomic force microscopy (AFM) and reviews our results of human metaphase chromosomes obtained by AFM. AFM imaging of the chromosomes revealed that the chromatid arm was not uniform in structure but had ridges and grooves along its length, which was most prominent in the late metaphase. The arrangement of these ridges and grooves was roughly symmetrical with the counterpart of the paired sister chromatids. AFM imaging of banded chromosomes also showed that the ridges and grooves were related to the G/Q-positive and G/Q-negative bands, respectively. At high magnification, the chromatid was seen to be produced by the compaction of highly twisted chromatin fiber loops, and its compaction tended to be stronger in the ridged regions of the chromosomes than in the grooved regions. Our AFM studies also showed the presence of catenation of chromatin fibers between the ridged portions of the chromatid in the late metaphase. Thus, AFM is useful for obtaining the three-dimensional surface topography not only in ambient conditions but also in physiological liquid conditions, and is expected to be an attractive tool for investigating the structure of chromosomes.
Collapse
|
8
|
Inaga S, Katsumoto T, Tanaka K, Kameie T, Nakane H, Naguro T. Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy. ACTA ACUST UNITED AC 2007; 70:43-9. [PMID: 17558143 DOI: 10.1679/aohc.70.43] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper introduces an aqueous solution of platinum blue (Pt-blue) as an alternative to uranyl acetate (UA) for staining in transmission electron microscopy (TEM). Pt-blue was prepared from a reaction of cis-dichlorodiamine-platinum (II) (cis-platin) with thymidine. When Pt-blue was dried on a microgrid and observed by TEM it showed a uniform appearance with tiny particles less than 1 nm in diameter. The effect of Pt-blue as an electron stain was then examined not only for positive staining of conventional ultrathin resin sections and counterstaining of post-embedding immuno-electron microscopy but also for negative staining. In ultrathin sections of the rat liver and renal glomerulus, Pt-blue provided good contrast images, especially in double staining combined with a lead stain (Pb). Almost all cell organelles were clearly observed with high contrast in these sections. Glycogen granules in the hepatic parenchymal cells were particularly electron dense in Pt-blue stained sections compared with those treated with UA. In longitudinal and transverse sections of budding influenza A viruses, a specific arrangement of rod-like structures, which correspond to the ribonucleoprotein complexes, was clearly shown in each virion stained with Pt-blue and Pb. When post-embedding immunoelectron microscopy was performed in ultrathin sections of HeLa cells embedded in Lowicryl K4M, the localization of Ki-67 protein was sufficiently detected even after Pt-blue and Pb staining. The present study also revealed that Pt-blue could be used for the negative staining of E. coli, allowing the visualization of a flagellum. These findings indicate that Pt-blue is a useful, safe, and easily obtainable electron stain that is an alternative to UA for TEM preparations.
Collapse
Affiliation(s)
- Sumire Inaga
- Division of Genome Morphology, Department of Functional, Morphological and Regulatory Science, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Ohashi M, Horie K, Hoshikawa Y, Nagata K, Osaki M, Ito H, Sairenji T. Accumulation of Epstein-Barr virus (EBV) BMRF1 protein EA-D during latent EBV activation of Burkitt's lymphoma cell line Raji. Microbes Infect 2006; 9:150-9. [PMID: 17223371 DOI: 10.1016/j.micinf.2006.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/29/2006] [Accepted: 11/06/2006] [Indexed: 11/25/2022]
Abstract
As a new model to elucidate molecular mechanisms in Epstein-Barr virus (EBV) activation, we tested the tetracycline-inducible (Tet-On)/BZLF1-oriP plasmid system in Raji cells. Cells transfected with this Tet-On plasmid did not activate EBV by doxycycline and surprisingly EBV latency was disrupted with large amounts of BMRF1 protein (EA-D) being accumulated in the cells. Brilliant EA-D fluorescence was markedly condensed in small sized cells, intra-cellular vesicles, and extra-cellular particles. Scanning electron microscopy demonstrated the extra-cellular particles to be covered with a membrane. EA-D molecules of 58, 50, 48, and 44kDa were expressed in the cells. The high (58 and 50kDa) and low (48 and 44kDa) EA-D molecules appeared in the early and late stages, respectively. Low EA-D molecules were detected mostly in EA-D positive cells separated into the heaviest density layer of a discontinuous Percoll gradient. Such molecules could be created from high EA-D molecules by protein phosphatase treatment. The EA-D molecules that appeared similar were detected in EBV-activated P3HR-1 and Akata cells. Several hypotheses concerning the accumulation of EA-D molecules of various polymorphic forms and their phosphorylation/dephosphorylation in this model system are presented, with possible biological and clinical relevance.
Collapse
Affiliation(s)
- Makoto Ohashi
- Division of Biosignaling, Department of Biomedical Science, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Falconi M, Teti G, Lanciotti C, Galanzi A, Mazzotti G. High resolution morphological analysis of in situ human chromosomes. Micron 2006; 37:146-53. [PMID: 16361104 DOI: 10.1016/j.micron.2005.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 08/09/2005] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to analyze the inner structure of chromosomes in cells arrested, fixed and cryosectioned in metaphase. The chromosomes in metaphase maps prepared using standard cytogenetic protocols, are usually covered by cellular debris, which obscures the structural details on the surface and limits analysis by techniques when using nanometric resolution. By using cryosectioning, the debris is removed and it is possible to analyze the internal structure of the chromosomes. We described the ultrastructure of chromosome sections fixed with either acetic acid, methanol or glutaraldehyde, evaluating the effect and the influence of the fixative on the morphology. Furthermore, we subjected those cells previously fixed with glutaraldehyde to osmic maceration in order to better visualize the intracellular structure. All samples were examined with a Field Emission In Lens Scanning Electron Microscope (FEISEM), which allows high-resolution analysis of biological samples without any metal coating. The results showed a package morphology in samples fixed with glutaraldehyde, mainly due to the high capacity of the fixative to strongly crosslink the proteins. In contrast, the fibrillar structure seen in cryosections fixed with acetic acid/methanol is due to the propensity of the fixatives to extract and remove proteins. We propose that in situ chromosomes fixed with glutaraldehyde and then osmicated are a good model for studying the inner structure of chromosomes by using high resolution scanning electron microscopy.
Collapse
Affiliation(s)
- M Falconi
- Department of Anatomical Sciences, Via Irnerio, 48, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|