1
|
Katoh Y, Ito T, Shimada Y, Ohnuma-Koyama A, Takahashi N, Okazaki Y, Shiga A, Kuwahara M, Yoshida T, Harada T. Spontaneous malignant myoid thymoma in an aged female Fischer 344 rat. J Toxicol Pathol 2018; 31:135-139. [PMID: 29750002 PMCID: PMC5938214 DOI: 10.1293/tox.2017-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
A whitish mass approximately 30 mm in diameter was noted in the anterior mediastinum of
a 67-week-old female Fischer 344 rat. Histopathologically, two types of tumor cells were
identified on the basis of morphologic features: epithelial tumor cells with a tubular or
cord-like growth pattern and rhabdomyosarcomatous tumor cells characterized by the
presence of cross-striations. Immunohistochemically, the epithelial tumor cells reacted
positively for cytokeratin AE1/AE3, and some reacted positively for p63, which is
expressed in normal thymic epithelial cells. The rhabdomyosarcomatous tumor cells stained
positively for desmin, sarcomeric actin, and S-100 protein, which coincides with the
stainability of normal thymic myoid cells. Since the tumor was also found to have
malignant features such as high proliferative activity, cytologic atypia, and necrotic
behavior, it was diagnosed as a malignant myoid thymoma. We believe that this is the first
case report of such a tumor in a rodent.
Collapse
Affiliation(s)
- Yoshitaka Katoh
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tsuyoshi Ito
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Yuko Shimada
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Aya Ohnuma-Koyama
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Yoshimasa Okazaki
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Atsushi Shiga
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Maki Kuwahara
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takanori Harada
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| |
Collapse
|
2
|
Lopes N, Vachon H, Marie J, Irla M. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation. EMBO Mol Med 2018; 9:835-851. [PMID: 28455312 PMCID: PMC5452038 DOI: 10.15252/emmm.201607176] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytoablative treatments lead to severe damages on thymic epithelial cells (TECs), which result in delayed de novo thymopoiesis and a prolonged period of T‐cell immunodeficiency. Understanding the mechanisms that govern thymic regeneration is of paramount interest for the recovery of a functional immune system notably after bone marrow transplantation (BMT). Here, we show that RANK ligand (RANKL) is upregulated in CD4+ thymocytes and lymphoid tissue inducer (LTi) cells during the early phase of thymic regeneration. Importantly, whereas RANKL neutralization alters TEC recovery after irradiation, ex vivo RANKL administration during BMT boosts the regeneration of TEC subsets including thymic epithelial progenitor‐enriched cells, thymus homing of lymphoid progenitors, and de novo thymopoiesis. RANKL increases specifically in LTi cells, lymphotoxin α, which is critical for thymic regeneration. RANKL treatment, dependent on lymphotoxin α, is beneficial upon BMT in young and aged individuals. This study thus indicates that RANKL may be clinically useful to improve T‐cell function recovery after BMT by controlling multiple facets of thymic regeneration.
Collapse
Affiliation(s)
- Noella Lopes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| | - Hortense Vachon
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| | - Julien Marie
- Department of Immunology Virology and Inflammation, Cancer Research Center of Lyon (CRCL) UMR INSERM1052, CNRS 5286, Lyon, France.,TGF-b and Immune Evasion, Tumor Immunology Program, DKFZ, Heidelberg, Germany
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille Cedex 09, France
| |
Collapse
|
3
|
Williams KM, Mella H, Lucas PJ, Williams JA, Telford W, Gress RE. Single cell analysis of complex thymus stromal cell populations: rapid thymic epithelia preparation characterizes radiation injury. Clin Transl Sci 2010; 2:279-85. [PMID: 19750208 DOI: 10.1111/j.1752-8062.2009.00128.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thymic epithelial cells (TECs) and dendritic cells are essential for the maintenance of thymopoiesis. Because these stromal elements define the progenitor niche, provide critical survival signals and growth factors, and direct positive and negative selection, detailed study of these populations is necessary to understand important elements for thymic renewal after cytotoxic injury. Study of TEC is currently hindered by lengthy enzymatic separation techniques with decreased viability. We present a new rapid separation technique that yields consistent viable TEC numbers in a quarter of the prior preparation time. Using this new procedure, we identify changes in stroma populations following total body irradiation (TBI). By flow cytometry, we show that TBI significantly depletes UEA+ medullary TEC, while sparing Ly51+ CD45- cells. Further characterization of the Ly51+ subset reveals enrichment of fibroblasts (CD45- Ly51+ MHCII-), while cortical TECs (CD45- Ly51+ MHCII+) were markedly reduced. Dendritic cells (CD11lc+ CD45+) were also decreased following TBI. These data suggest that cytotoxic preparative regimens may impair thymic renewal by reducing critical populations of cortical and medullary TEC, and that such thymic damage can be assessed by this new rapid separation technique, thereby providing a means of assessing optimal conditioning pretransplantfor enhancing thymic-dependent immune reconstitution posttranspiant.
Collapse
Affiliation(s)
- Kirsten M Williams
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Osada M, Jardine L, Misir R, Andl T, Millar SE, Pezzano M. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS One 2010; 5:e9062. [PMID: 20161711 PMCID: PMC2817005 DOI: 10.1371/journal.pone.0009062] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Thymic epithelial cell (TEC) microenvironments are essential for the
recruitment of T cell precursors from the bone marrow, as well as the
subsequent expansion and selection of thymocytes resulting in a mature
self-tolerant T cell repertoire. The molecular mechanisms, which control
both the initial development and subsequent maintenance of these critical
microenvironments, are poorly defined. Wnt signaling has been shown to be
important to the development of several epithelial tissues and organs.
Regulation of Wnt signaling has also been shown to impact both early
thymocyte and thymic epithelial development. However, early blocks in thymic
organogenesis or death of the mice have prevented analysis of a role of
canonical Wnt signaling in the maintenance of TECs in the postnatal
thymus. Methodology/Principal Findings Here we demonstrate that tetracycline-regulated expression of the canonical
Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult
mice, results in rapid thymic degeneration characterized by a loss of
ΔNP63+ Foxn1+ and
Aire+ TECs, loss of K5K8DP TECs thought to represent
or contain an immature TEC progenitor, decreased TEC proliferation and the
development of cystic structures, similar to an aged thymus. Removal of DKK1
from DKK1-involuted mice results in full recovery, suggesting that canonical
Wnt signaling is required for the differentiation or proliferation of TEC
populations needed for maintenance of properly organized adult thymic
epithelial microenvironments. Conclusions/Significance Taken together, the results of this study demonstrate that canonical Wnt
signaling within TECs is required for the maintenance of epithelial
microenvironments in the postnatal thymus, possibly through effects on TEC
progenitor/stem cell populations. Downstream targets of Wnt signaling, which
are responsible for maintenance of these TEC progenitors may provide useful
targets for therapies aimed at counteracting age associated thymic
involution or the premature thymic degeneration associated with cancer
therapy and bone marrow transplants.
Collapse
Affiliation(s)
- Masako Osada
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Logan Jardine
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Ruth Misir
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
of America
| | - Sarah E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University
of Pennsylvania, Philadelphia, Pennsylvania, United States of
America
| | - Mark Pezzano
- Department of Biology, The City College of New York, New York, New York,
United States of America
- * E-mail:
| |
Collapse
|
5
|
Takaki T, Hosaka N, Miyake T, Cui W, Nishida T, Inaba M, Ikehara S. Presence of donor-derived thymic epithelial cells in [B6-->MRL/lpr] mice after allogeneic intra-bone marrow-bone marrow transplantation (IBM-BMT). J Autoimmun 2008; 31:408-15. [PMID: 19022623 DOI: 10.1016/j.jaut.2008.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/02/2008] [Accepted: 09/08/2008] [Indexed: 12/22/2022]
Abstract
We have previously shown that allogeneic intra-bone marrow-bone marrow transplantation (IBM-BMT) can be used to treat autoimmune diseases in MRL/lpr (H-2(K)) mice with replacing not only hematolymphoid cells but also stromal cells by normal C57BL/6 (B6: H-2(b)) mouse cells. In the present study, we examined for existence of donor-derived thymic epithelial cells (TECs) in the host thymus using green fluorescent protein (GFP)-B6 (H-2(b)) mice. In [GFP-B6-->MRL/lpr] chimeric mice, splenocytes and thymocytes were completely replaced by donor-type cells, and levels of serum autoantibodies and proteinuria were significantly - reduced to those levels of normal donors. Interestingly, GFP-expressing TECs - not only medullary TECs, which express mouse thymus stromal (MTS)-10, but also cortical TECs, which express cytokeratin 18 - were found. Also, the number of autoimmune regulator (AIRE) expressing TECs, which regulates tissue-specific antigens to delete autoreactive cells, was reduced in the chimeric mice to that of the donor, whereas the number of forkhead box N1 (FOXN1) expressing TECs, which are crucial in the terminal differentiation of TECs, remained unchanged. These findings suggest that BMCs contain the precursors of functional TECs, and that they can differentiate into TECs, thereby correcting thymic function.
Collapse
Affiliation(s)
- Takashi Takaki
- First Department of Pathology, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Dooley J, Erickson M, Farr AG. Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:5225-32. [PMID: 18832676 PMCID: PMC2677919 DOI: 10.4049/jimmunol.181.8.5225] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A widely held model of thymic epithelial differentiation is based on patterns of keratin expression, where a K8(+)K5(+) progenitor gives rise to K8(+)K5/K14(-) cortical thymic epithelium (CTEC), and medullary thymic epithelium (MTEC) are K8(-)K5(+)K14(+). The thymic phenotype of p63-deficient mice indicates that p63 is an important regulator of proximal stages of thymic epithelial differentiation. In this study, we have examined several features of the thymic medullary compartment in wild-type and Aire-deficient thymi in an effort to integrate the proapoptotic activity of Aire with these different perspectives of TE differentiation. Patterns of keratin and p63 expression by MTEC described here are difficult to reconcile with postmitotic MTEC that express a K8(-)K14(+) phenotype and suggest that the patterns of p63 and keratin expression reflecting differentiation programs of other epithelial tissues provide a useful framework for revising models of TE differentiation. Alterations of the Aire(-/-) MTEC compartment included reduced expression of p63, increased frequency of MTEC expressing truncated Aire protein, and shifts in the pattern of keratin expression and epithelial morphology. These data suggest a scenario where cellular targets of Aire-mediated apoptosis are postmitotic MTEC that have not yet completed their terminal differentiation program. According to this view, the minor population of globular K8(+)K14(-/low) MTEC observed in the Aire(+/+) thymus and significantly expanded in the Aire(-/-) thymic medulla represent end-stage, terminally differentiated MTEC. These Aire-dependent alterations of the MTEC compartment suggest that the activity of Aire is not neutral with respect to the program of MTEC differentiation.
Collapse
Affiliation(s)
- James Dooley
- Departments of Biological Structure, University of Washington, Seattle, WA, USA 98195-7420
| | - Matthew Erickson
- Departments of Biological Structure, University of Washington, Seattle, WA, USA 98195-7420
| | - Andrew G. Farr
- Departments of Biological Structure, University of Washington, Seattle, WA, USA 98195-7420
- Immunology, University of Washington, Seattle, WA, USA 98195-7420
- Institute for Stem Cell and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA 98195-7420
| |
Collapse
|