1
|
Ghanbari M, Salkovskiy Y, Carlson MA. The rat as an animal model in chronic wound research: An update. Life Sci 2024; 351:122783. [PMID: 38848945 DOI: 10.1016/j.lfs.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Yury Salkovskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Mark A Carlson
- Department of Surgery, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Parameters for estimating the feasibility of implantation of a semi-implantable bone conduction device (SIBCD) in children and adolescents. Eur Arch Otorhinolaryngol 2022; 280:2695-2705. [PMID: 36454382 PMCID: PMC10175334 DOI: 10.1007/s00405-022-07752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022]
Abstract
Abstract
Purpose
In children and adolescents, preoperative planning for a semi-implantable bone conduction device (SIBCD) is crucial. The geometric changes of the new version of a common SIBCD should enable a higher rate of successful implantation due to its flatter actuator. Thus, this radioanatomic study compared the rate of successful implantation of both device versions at the traditional mastoidal localization and two alternative sites, retrosigmoidal, and parietal, and investigated parameters helping to estimate the feasibility.
Methods
A retrospective analysis of 136 CT scans of 0 to 20-year-old patients, evaluation of demographic parameters, radioanatomy, and assessment of head diameter was conducted. The feasibility was investigated for certain age groups at three implantation sites. Prediction of feasible implantation by means of different parameters was calculated.
Results
A significant higher implantation rate was observed with the new device for all three sites and age groups. The age group of 6–8 years (n = 19) had most striking differences with a 58.1% rate of successful implantation with the new device without spacer (80% with spacer) at the mastoidal localization, whereas none with the old implant. Head diameter was identified as the most predictive parameter regarding all implantation sites (mastoidal: p = 0.030; retrosigmoidal: p = 0.006; parietal: p < 0.0001), age for the mastoidal (p < 0.0001) and retrosigmoidal (p < 0.0001), and gender for the parietal site (p = 0.001).
Conclusion
The geometric changes of the actuator lead to a higher rate of successful implantation in all age-groups and all three localizations with reducing the requirement for spacers. Parameters age and head diameter might aid in estimating the rate of successful implantation in young patients and may be a novel tool to assist in the decision-making process for a SIBCD.
Collapse
|
3
|
A review of animal models from 2015 to 2020 for preclinical chronic wounds relevant to human health. J Tissue Viability 2021; 30:291-300. [PMID: 34103213 DOI: 10.1016/j.jtv.2021.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Chronic wounds fail to heal in a timely manner and exhibit sustained inflammation with slow tissue repair and remodelling. They decrease mobility and quality of life, and remain a major clinical challenge in the long-term care of many patients, affecting 6.5 million individuals annually in the U.S., decreasing mobility and quality of life. Treatment costs are a major burden on the U.S. healthcare system, totalling between $25 and $100 billion annually. Chronic wound severity depends upon several factors such as comorbidities, severity of tissue damage, infection and presence of necrosis and vary greatly in their healing mechanisms. In vivo animal models are critical for studying healing pathways of chronic wounds and seek to replicate clinical factors for trials of topical, systemic, and device-based therapeutics. This comprehensive review discusses murine, rat, lapine, canine, feline and porcine models of chronic wounds. RECENT ADVANCES Foundational chronic wound models for several species are discussed together with refinements and advances in the time period between 2015 and 2020 which have the potential for broad utility in investigating biological and device-based wound treatment therapies for human health. CRITICAL ISSUES Chronic wounds fail to heal in a timely manner and have differing aetiologies, rendering no single in vivo animal model universally applicable. FUTURE DIRECTIONS Further studies are required to develop clinically relevant chronic wound animal model which reflect the clinical reality of the various influences of age, disease, comorbidities and gender on delayed healing and enhance understanding of the biological processes of human wound healing.
Collapse
|
4
|
Kwek MSY, Thangaveloo M, Hui SLB, Madden LE, Phillips AR, Becker DL. Characterisation of an ischemia reperfusion model for the formation of a stage I pressure ulcer in mouse skin. J Tissue Viability 2021; 30:352-362. [PMID: 33875344 DOI: 10.1016/j.jtv.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/09/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Pairs of magnets were applied to the loose skin on the backs of mice in order to cause ischemia for periods of 1.5, 2, 2.5 and 3 h followed by reperfusion. We found 1.5 h of ischemia resulted in the most reliable outcome of blanched skin but no redness or skin breakdown. Histological analysis at 4 h of reperfusion showed, in the centre of the insult, condensed nuclei in the epidermis and sebaceous glands with a build up of neutrophils in the blood vessels, and a reduction in the number of fibroblasts. At 24 h, spongiosis was seen in the epidermis and pockets of neutrophils began to accumulate under it, as well as being scatted through the dermis. In the centre of the insult there was a loss of sebaceous gland nuclei and fibroblasts. Four days after the insult, spongiosis was reduced in the epidermis at the edge of the insult but enhanced in the centre and in hair follicles. Leukocytes were seen throughout the central dermis. At 8 days, spongiosis and epidermal thickness had reduced and fibroblasts were reappearing. However, blood vessels still had leukocytes lining the lumen. The gap junction protein connexin 43 was significantly elevated in the epidermis at 4 h and 24 h reperfusion. Ischemia of 1.5 h generates a sterile inflammatory reaction causing the loss of some cell types but leaving the epidermis intact reminiscent of a stage I pressure ulcer.
Collapse
Affiliation(s)
- Milton Sheng Yi Kwek
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore
| | - Moogaambikai Thangaveloo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore
| | - Sophia Lim Beng Hui
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore
| | - Leigh E Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore
| | | | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore; Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, 308232, Singapore.
| |
Collapse
|
5
|
Abstract
HYPOTHESIS Audio processor magnets used in transcutaneous active hearing implants vary in retention force. We hypothesized that a range of optimal magnetic retention forces could be derived, based on objective in-situ measurements of individual retention forces. BACKGROUND The magnetic force required to retain the proper placement of transcutaneous active hearing implants varies among patients. Currently, audiologists rely on personal experience in deciding which magnet to use. Insufficient force causes frequent loss of the single-unit processors or external coils of behind-the-ear devices, and excessive force causes pain and skin irritations. METHODS We experimentally determined magnetic retention force as a function of the distance between two magnets for different processor-implant magnet combinations. In addition, we studied individual in situ retention forces in 100 patients with hearing devices. Skin status was evaluated by a physician and assessed by patient self-reporting and a questionnaire. RESULTS Force-distance functions showed that different magnet strengths had differential effects only at distances less than 6 mm. Examiner and patient skin status assessments and comfort scores showed that optimal retention force range was 0.23 to 0.4 N. CONCLUSION We found that the currently available magnet types restrict the range of feasible skin flap thicknesses to a maximum of 6 mm. Further we conclude that retention forces between 0.23 and 0.4 N could provide the appropriate trade-off between the risk of losing device fixation and of causing skin irritations. We recommend measuring the retention force in all patients.
Collapse
|
6
|
Kurose T, Hashimoto M, Ozawa J, Kawamata S. Analysis of Gene Expression in Experimental Pressure Ulcers in the Rat with Special Reference to Inflammatory Cytokines. PLoS One 2015; 10:e0132622. [PMID: 26177082 PMCID: PMC4503587 DOI: 10.1371/journal.pone.0132622] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/16/2015] [Indexed: 11/24/2022] Open
Abstract
Pressure ulcers have been investigated in a few animal models, but the molecular mechanisms of pressure ulcers are not well understood. We hypothesized that pressure results in up-regulation of inflammatory cytokines and those cytokines contribute to the formation of pressure ulcers. We measured genome-wide changes in transcript levels after compression, and focused especially on inflammatory cytokines. The abdominal wall of rats was compressed at 100 mmHg for 4 hours by two magnets. Specimens were obtained 12 hours, 1, or 3 days after compression, and analyzed by light microscopy, microarray, Real-Time PCR, and ELISA. The skin and subcutaneous tissue in the compressed area were markedly thickened. The microarray showed that numerous genes were up-regulated after the compression. Up-regulated genes were involved in apoptosis, inflammation, oxidative stress, proteolysis, hypoxia, and so on. Real-Time PCR showed the up-regulation of granulocyte-macrophage colony stimulating factor (GM-CSF), interferon γ (IFN-γ), interleukin 1β (IL-1β), interleukin 1 receptor antagonist gene (IL1Ra), interleukin 6 (IL-6), interleukin 10 (IL-10), matrix metalloproteinase 3 (MMP-3), tissue inhibitor of metalloproteinase 1 (TIMP-1), and tumor necrosis factor α (TNF-α) at 12 hours, IFN-γ, IL-6, IL-10, MMP-3, and TIMP-1 at 1 day, and IFN-γ, IL-6, and MMP-3 at 3 days. Some genes from subcutaneous tissue were up-regulated temporarily, and others were kept at high levels of expression. ELISA data showed that the concentrations of IL-1β and IL-6 proteins were most notably increased following compression. Prolonged up-regulation of IL-1β, and IL-6 might enhance local inflammation, and continuous local inflammation may contribute to the pressure ulcer formation. In addition, GM-CSF, IFN-γ, MMP-3, and TIMP-1 were not reported previously in the wound healing process, and those genes may have a role in development of the pressure ulcers. Expression data from Real-Time PCR were generally in good agreement with those of the microarray. Our microarray data were useful for identifying genes involved in pressure ulcer formation. However, the expression levels of the genes didn’t necessarily correspond with protein production. As such, the functions of these cytokines need to be further investigated.
Collapse
Affiliation(s)
- Tomoyuki Kurose
- Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Masakazu Hashimoto
- Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junya Ozawa
- Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
| | - Seiichi Kawamata
- Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Kawamata S, Kurose T, Kubori Y, Muramoto H, Honkawa Y. Effects of the magnitude of pressure on the severity of injury and capillary closure in rat experimental pressure ulcers. Med Mol Morphol 2014; 48:24-32. [DOI: 10.1007/s00795-014-0073-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/29/2022]
|
8
|
Pressure ulcer staging revisited: superficial skin changes & Deep Pressure Ulcer Framework©. Adv Skin Wound Care 2012; 24:571-80; quiz 581-2. [PMID: 22101483 DOI: 10.1097/01.asw.0000408467.26999.6d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Deficiencies in the current pressure ulcer classification system create the impetus for the current discourse on the clinical, legal, and economic implications of staging and considering shifting the paradigm in pressure ulcer description and assessment.
Collapse
|
9
|
Loerakker S, Manders E, Strijkers GJ, Nicolay K, Baaijens FPT, Bader DL, Oomens CWJ. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading. J Appl Physiol (1985) 2011; 111:1168-77. [DOI: 10.1152/japplphysiol.00389.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (∼20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17–66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60–1.51 J/mm) and ischemia (50.8–99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.
Collapse
Affiliation(s)
| | - E. Manders
- Soft Tissue Biomechanics and Engineering and
| | - G. J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; and
| | - K. Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; and
| | | | - D. L. Bader
- Soft Tissue Biomechanics and Engineering and
- Faculty of Health Sciences, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
10
|
Loerakker S, Oomens CWJ, Manders E, Schakel T, Bader DL, Baaijens FPT, Nicolay K, Strijkers GJ. Ischemia-reperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI. Magn Reson Med 2011; 66:528-37. [PMID: 21360588 DOI: 10.1002/mrm.22801] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/15/2010] [Accepted: 12/10/2010] [Indexed: 11/07/2022]
Abstract
Pressure ulcers are localized areas of soft tissue breakdown due to mechanical loading. Susceptible individuals are subjected to pressure relief strategies to prevent long loading periods. Therefore, ischemia-reperfusion injury may play an important role in the etiology of pressure ulcers. To investigate the inter-relation between postischemic perfusion and changes in skeletal muscle integrity, the hindlimbs of Brown Norway rats were subjected to 4-h ischemia followed by 2-h reperfusion. Dynamic contrast-enhanced MRI was used to examine perfusion, and changes in skeletal muscle integrity were monitored with T2-weighted MRI. The dynamic contrast-enhanced MRI data showed a heterogeneous postischemic profile in the hindlimb, consisting of areas with increased contrast enhancement (14-76% of the hindlimb) and regions with no-reflow (5-77%). For T2, a gradual increase in the complete leg was observed during the 4-h ischemic period (from 34 to 41 msec). During the reperfusion phase, a heterogeneous distribution of T2 was observed. Areas with increased contrast enhancement were associated with a decrease in T2 (to 38 msec) toward preischemic levels, whereas no-reflow areas exhibited a further increase in T2 (to 42 msec). These results show that reperfusion after prolonged ischemia may not be complete, thereby continuing the ischemic condition and aggravating tissue damage.
Collapse
Affiliation(s)
- S Loerakker
- Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|