1
|
Empitu MA, Rinastiti P, Kadariswantiningsih IN. Targeting endothelin signaling in podocyte injury and diabetic nephropathy-diabetic kidney disease. J Nephrol 2024:10.1007/s40620-024-02072-w. [PMID: 39302622 DOI: 10.1007/s40620-024-02072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Despite advances in diabetes management, there is an urgent need for novel therapeutic strategies since the current treatments remain insufficient in halting the progression of diabetic nephropathy-diabetic kidney disease (DN-DKD). This review is mainly addressed on the pivotal role of endothelin-1 in the pathophysiology of DN, with a specific focus on its effects on podocytes and the glomerular filtration barrier. Endothelin-1 promotes mesangial cell proliferation, sclerosis, and direct podocyte injury via the activation of endothelin type A and B receptors, that drive the progression of glomerulosclerosis in DN-DKD. Endothelin receptor antagonists, including drugs like atrasentan and sparsentan, have demonstrated nephroprotective effects in experimental models by reducing proteinuria and podocyte injury. The therapeutic potential to slow the progression of DN to end-stage kidney disease (ESKD) of these endothelin receptor antagonists in clinical practice is currently under evaluation. However, fluid retention and increased risk of heart failure associated with endothelin receptor antagonists need careful consideration. This review aims to provide an in-depth analysis of the pathophysiological role of endothelin and the emerging therapeutic implications of targeting this pathway in DN-DKD and discusses efficacy, safety, and the possibility of combining the new generation of endothelin receptor antagonists with the standard treatment of CKD and DN-DKD.
Collapse
Affiliation(s)
- Maulana Antiyan Empitu
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Faculty of Health, Medicine and Natural Sciences (FIKKIA), Airlangga University, Banyuwangi, Indonesia
| | - Pranindya Rinastiti
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
- Department of Clinical Pathology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | | |
Collapse
|
2
|
Salichos L, Thayavally R, Kloen P, Hadjiargyrou M. Human nonunion tissues display differential gene expression in comparison to physiological fracture callus. Bone 2024; 183:117091. [PMID: 38570121 PMCID: PMC11023750 DOI: 10.1016/j.bone.2024.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The healing of bone fractures can become aberrant and lead to nonunions which in turn have a negative impact on patient health. Understanding why a bone fails to normally heal will enable us to make a positive impact in a patient's life. While we have a wealth of molecular data on rodent models of fracture repair, it is not the same with humans. As such, there is still a lack of information regarding the molecular differences between normal physiological repair and nonunions. This study was designed to address this gap in our molecular knowledge of the human repair process by comparing differentially expressed genes (DEGs) between physiological fracture callus and two different nonunion types, hypertrophic (HNU) and oligotrophic (ONU). RNA sequencing data revealed over ∼18,000 genes in each sample. Using the physiological callus as the control and the nonunion samples as the experimental groups, bioinformatic analyses identified 67 and 81 statistically significant DEGs for HNU and ONU, respectively. Out of the 67 DEGs for the HNU, 34 and 33 were up and down-regulated, respectively. Similarly, out of the 81 DEGs for the ONU, 48 and 33 were up and down-regulated, respectively. Additionally, we also identified common genes between the two nonunion samples; 8 (10.8 %) upregulated and 12 (22.2 %) downregulated. We further identified many biological processes, with several statistically significant ones. Some of these were related to muscle and were common between the two nonunion samples. This study represents the first comprehensive attempt to understand the global molecular events occurring in human nonunion biology. With further research, we can perhaps decipher new molecular pathways involved in aberrant healing of human bone fractures that can be therapeutically targeted.
Collapse
Affiliation(s)
- Leonidas Salichos
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA
| | - Rishika Thayavally
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA
| | - Peter Kloen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location, Meibergdreef 9, the Netherlands; Amsterdam Movement Sciences, (Tissue Function and Regeneration), Amsterdam, the Netherlands
| | - Michael Hadjiargyrou
- Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA; Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA.
| |
Collapse
|
3
|
Qian Z, Chen K, Yang L, Li C. Apoptosis-inducing factor 1 mediates Vibrio splendidus-induced coelomocyte apoptosis via importin β dependent nuclear translocation in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109491. [PMID: 38490346 DOI: 10.1016/j.fsi.2024.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
As is well known, apoptosis is an important form of immune response and immune regulation, particularly playing a crucial role in combating microbial infections. Apoptosis-inducing factor 1 (AIF-1) is essential for apoptosis to induce chromatin condensation and DNA fragmentation via a caspase-independent pathway. The nuclear translocation of AIF-1 is a key step in apoptosis but the molecular mechanism is still unclear. In this study, the homologous gene of AIF-1, named AjAIF-1, was cloned and identified in Apostichopus japonicus. The mRNA expression of AjAIF-1 was significantly increased by 46.63-fold after Vibrio splendidus challenge. Silencing of AjAIF-1 was found to significantly inhibit coelomocyte apoptosis because the apoptosis rate of coelomocyte decreased by 0.62-fold lower compared with the control group. AjAIF-1 was able to promote coelomocyte apoptosis through nuclear translocation under the V. splendidus challenge. Moreover, AjAIF-1 and Ajimportin β were mainly co-localized around the nucleus in vivo and silencing Ajimportin β significantly inhibited the nuclear translocation of AjAIF-1 and suppressed coelomocyte apoptosis by 0.64-fold compared with control. In summary, nuclear translocation of AjAIF-1 will likely mediate coelomocyte apoptosis through an importin β-dependent pathway in sea cucumber.
Collapse
Affiliation(s)
- Zepeng Qian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
4
|
Yu J, Wang S, Chen SJ, Zheng MJ, Yuan CR, Lai WD, Wen JJ, You WT, Liu PQ, Khanna R, Jin Y. Sinomenine ameliorates fibroblast-like synoviocytes dysfunction by promoting phosphorylation and nuclear translocation of CRMP2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117704. [PMID: 38176664 DOI: 10.1016/j.jep.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 μg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.
Collapse
Affiliation(s)
- Jie Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Song Wang
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Si-Jia Chen
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wei-Dong Lai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Jun-Jun Wen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Pu-Qing Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, College of Dentistry, and NYU Pain Research Center, New York, 10010, USA.
| | - Yan Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Sun M, Shi G, Zhang X, Kan C, Xie S, Peng W, Liu W, Wang P, Zhang R. Deciphering roles of protein post-translational modifications in IgA nephropathy progression and potential therapy. Aging (Albany NY) 2024; 16:964-982. [PMID: 38175721 PMCID: PMC10817402 DOI: 10.18632/aging.205406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), one type of glomerulonephritis, displays the accumulation of glycosylated IgA in the mesangium. Studies have demonstrated that both genetics and epigenetics play a pivotal role in the occurrence and progression of IgAN. Post-translational modification (PTM) has been revealed to critically participate in IgAN development and progression because PTM dysregulation results in impaired degradation of proteins that regulate IgAN pathogenesis. A growing number of studies identify that PTMs, including sialylation, o-glycosylation, galactosylation, phosphorylation, ubiquitination and deubiquitination, modulate the initiation and progression of IgAN. Hence, in this review, we discuss the functions and mechanisms of PTMs in regulation of IgAN. Moreover, we outline numerous compounds that govern PTMs and attenuate IgAN progression. Targeting PTMs might be a useful strategy to ameliorate IgAN.
Collapse
Affiliation(s)
- Mengying Sun
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Guojuan Shi
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Xiaohan Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Chao Kan
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Shimin Xie
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Weixiang Peng
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| | - Wenjun Liu
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, Zhejiang 310018, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong 519000, China
| |
Collapse
|