1
|
Kwiatkowska E, Kwiatkowski S, Dziedziejko V, Tomasiewicz I, Domański L. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development. BIOLOGY 2023; 12:biology12020327. [PMID: 36829602 PMCID: PMC9953191 DOI: 10.3390/biology12020327] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Acute kidney injury (AKI) can result from multiple factors. The main cause is reduced renal perfusion. Kidneys are susceptible to ischemia due to the anatomy of microcirculation that wraps around the renal tubules-peritubular capillary (PTC) network. Cortical and medullary superficial tubules have a large share in transport and require the supply of oxygen for ATP production, while it is the cortex that receives almost 100% of the blood flowing through the kidneys and the medulla only accounts for 5-10% of it. This difference makes the tubules present in the superficial layer of the medulla very susceptible to ischemia. Impaired blood flow causes damage to the endothelium, with an increase in its prothrombotic and pro-adhesive properties. This causes congestion in the microcirculation of the renal medulla. The next stage is the migration of pericytes with the disintegration of these vessels. The phenomenon of destruction of small vessels is called peritubular rarefaction, attributed as the main cause of further irreversible changes in the damaged kidney leading to the development of chronic kidney disease. In this article, we will present the characteristic structure of renal microcirculation, its regulation, and the mechanism of damage in acute ischemia, and we will try to find methods of prevention with particular emphasis on the inhibition of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
- Correspondence:
| | - Sebastian Kwiatkowski
- Department of Obstetrician and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Izabela Tomasiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| |
Collapse
|
2
|
Raghubar AM, Pham DT, Tan X, Grice LF, Crawford J, Lam PY, Andersen SB, Yoon S, Teoh SM, Matigian NA, Stewart A, Francis L, Ng MSY, Healy HG, Combes AN, Kassianos AJ, Nguyen Q, Mallett AJ. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Front Med (Lausanne) 2022; 9:873923. [PMID: 35872784 PMCID: PMC9300864 DOI: 10.3389/fmed.2022.873923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Available transcriptomes of the mammalian kidney provide limited information on the spatial interplay between different functional nephron structures due to the required dissociation of tissue with traditional transcriptome-based methodologies. A deeper understanding of the complexity of functional nephron structures requires a non-dissociative transcriptomics approach, such as spatial transcriptomics sequencing (ST-seq). We hypothesize that the application of ST-seq in normal mammalian kidneys will give transcriptomic insights within and across species of physiology at the functional structure level and cellular communication at the cell level. Here, we applied ST-seq in six mice and four human kidneys that were histologically absent of any overt pathology. We defined the location of specific nephron structures in the captured ST-seq datasets using three lines of evidence: pathologist's annotation, marker gene expression, and integration with public single-cell and/or single-nucleus RNA-sequencing datasets. We compared the mouse and human cortical kidney regions. In the human ST-seq datasets, we further investigated the cellular communication within glomeruli and regions of proximal tubules-peritubular capillaries by screening for co-expression of ligand-receptor gene pairs. Gene expression signatures of distinct nephron structures and microvascular regions were spatially resolved within the mouse and human ST-seq datasets. We identified 7,370 differentially expressed genes (p adj < 0.05) distinguishing species, suggesting changes in energy production and metabolism in mouse cortical regions relative to human kidneys. Hundreds of potential ligand-receptor interactions were identified within glomeruli and regions of proximal tubules-peritubular capillaries, including known and novel interactions relevant to kidney physiology. Our application of ST-seq to normal human and murine kidneys confirms current knowledge and localization of transcripts within the kidney. Furthermore, the generated ST-seq datasets provide a valuable resource for the kidney community that can be used to inform future research into this complex organ.
Collapse
Affiliation(s)
- Arti M. Raghubar
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Duy T. Pham
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Xiao Tan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Laura F. Grice
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Pui Yeng Lam
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Stacey B. Andersen
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
- UQ Sequencing Facility, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Sohye Yoon
- Genome Innovation Hub, University of Queensland, Brisbane, QLD, Australia
| | - Siok Min Teoh
- UQ Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas A. Matigian
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Stewart
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Leo Francis
- Anatomical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
| | - Monica S. Y. Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Nephrology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Helen G. Healy
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Kassianos
- Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Mallett
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Townsville, Queensland, QLD, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Queensland, QLD, Australia
| |
Collapse
|
3
|
The Endothelial Glycocalyx as a Target of Ischemia and Reperfusion Injury in Kidney Transplantation-Where Have We Gone So Far? Int J Mol Sci 2021; 22:ijms22042157. [PMID: 33671524 PMCID: PMC7926299 DOI: 10.3390/ijms22042157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The damage of the endothelial glycocalyx as a consequence of ischemia and/or reperfusion injury (IRI) following kidney transplantation has come at the spotlight of research due to potential associations with delayed graft function, acute rejection as well as long-term allograft dysfunction. The disintegration of the endothelial glycocalyx induced by IRI is the crucial event which exposes the denuded endothelial cells to further inflammatory and oxidative damage. The aim of our review is to present the currently available data regarding complex links between shedding of the glycocalyx components, like syndecan-1, hyaluronan, heparan sulphate, and CD44 with the activation of intricate immune system responses, including toll-like receptors, cytokines and pro-inflammatory transcription factors. Evidence on modes of protection of the endothelial glycocalyx and subsequently maintenance of endothelial permeability as well as novel nephroprotective molecules such as sphingosine-1 phosphate (S1P), are also depicted. Although advances in technology are making the visualization and the analysis of the endothelial glycocalyx possible, currently available evidence is mostly experimental. Ongoing progress in understanding the complex impact of IRI on the endothelial glycocalyx, opens up a new era of research in the field of organ transplantation and clinical studies are of utmost importance for the future.
Collapse
|
4
|
Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. Int J Mol Sci 2020; 21:ijms21218255. [PMID: 33158122 PMCID: PMC7662781 DOI: 10.3390/ijms21218255] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Peritubular capillary (PTC) rarefaction is commonly detected in chronic kidney disease (CKD) such as hypertensive nephrosclerosis and diabetic nephropathy. Moreover, PTC rarefaction prominently correlates with impaired kidney function and predicts the future development of end-stage renal disease in patients with CKD. However, it is still underappreciated that PTC rarefaction is a pivotal regulator of CKD progression, primarily because the molecular mechanisms of PTC rarefaction have not been well-elucidated. In addition to the established mechanisms (reduced proangiogenic factors and increased anti-angiogenic factors), recent studies discovered significant contribution of the following elements to PTC loss: (1) prompt susceptibility of PTC to injury, (2) impaired proliferation of PTC, (3) apoptosis/senescence of PTC, and (4) pericyte detachment from PTC. Mainly based on the recent and novel findings in basic research and clinical study, this review describes the roles of the above-mentioned elements in PTC loss and focuses on the major factors regulating PTC angiogenesis, the assessment of PTC rarefaction and its surrogate markers, and an overview of the possible therapeutic agents to mitigate PTC rarefaction during CKD progression. PTC rarefaction is not only a prominent histological characteristic of CKD but also a central driving force of CKD progression.
Collapse
|
5
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
6
|
Saifi MA, Godugu C. Inhibition of lysyl oxidase ameliorates renal injury by inhibiting CD44-mediated pericyte detachment and loss of peritubular capillaries. Life Sci 2020; 243:117294. [PMID: 31927047 DOI: 10.1016/j.lfs.2020.117294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is a common pathological manifestation of almost all forms of kidney disease irrespective of the etiological cause. Microvascular rarefaction represents itself as an important phenomenon associated with renal fibrosis and shows strong correlation with decline in renal functions. Lysyl oxidase (LOX) catalyzes crosslinking of extracellular matrix (ECM) proteins including collagens, plays an important role in stabilization of degradation resistant matrix. Since, there seems to be a causal link between deposition of excessive ECM and microvascular rarefaction, we investigated the effects of reduction in renal fibrosis on microvascular rarefaction in acute as well as end stage kidney. We used a well-established unilateral ureteral obstruction (UUO)-induced renal fibrosis model to produce renal fibrosis in animals. We treated animals with a LOX inhibitor, β-aminopropionitrile (BAPN, 100 mg/kg, i.p.) and investigated effects on renal fibrosis and microvascular rarefaction. We observed that LOX inhibition was associated with reduction in collagen deposition in UUO-induced renal fibrosis animal model. Further, ECM normalization by LOX inhibition decreased the loss of peritubular capillaries (PTCs) in fibrotic kidney in acute study while the LOX inhibition failed to inhibit PTCs loss in end stage kidney. The results of present study suggested that inhibition of LOX reduces collagen deposition and renal fibrosis. Further, the reduction in fibrosis fails to protect from PTCs loss in chronic study suggesting the absence of strong link between reduction in fibrosis and improvement in PTCs in an end stage kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS One 2019; 14:e0202842. [PMID: 30818366 PMCID: PMC6394974 DOI: 10.1371/journal.pone.0202842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis induced by unilateral ureteral obstruction (UUO) in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice. We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of UUO kidneys from WT mice and BLT1-/- mice. Accumulation of immunoreactive type I collagen in WT UUO kidneys increased over time; however, the increase was less prominent in BLT1-/- UUO kidneys. Accumulation of S100A4-positive fibroblasts increased temporally in WT UUO kidneys, but was again less pronounced in-BLT1-/- UUO kidneys. The same was true of mRNA encoding transforming growth factor-β (TGF)-β and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-β, increased temporally in WT UUO and BLT1-/- UUO kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-β/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/—BM→WT than in WT-BM→WT. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.
Collapse
|
8
|
Hassan SS, Rizk A, Thomann C, Motawie A, Abdelfattah S, Ahmad Z. Preconditioning with atorvastatin against renal ischemia-reperfusion injury in nondiabetic versus diabetic rats. Can J Physiol Pharmacol 2018; 97:1-14. [PMID: 30412424 DOI: 10.1139/cjpp-2018-0228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute renal failure complicates renal ischemia-reperfusion (I/R) owing to reactive oxygen species production. Atorvastatin (ATO) has anti-inflammatory and antioxidant properties. The current study investigated whether ATO alleviated damage induced by renal I/R injury in nondiabetic versus diabetic rat models. Thirty-six rats were equally divided into 6 groups: group A1 (nondiabetic sham), group A2 (nondiabetic I/R), group A3 (nondiabetic ATO + I/R), group B1 (diabetic sham), group B2 (diabetic I/R), and group B3 (diabetic ATO + I/R). All groups experienced 45 min of bilateral renal ischemia followed by 24 h of reperfusion. Groups A3 and B3 were treated with single intraperitoneal doses of ATO (10 mg/kg) 30 min before ischemia. Histological analysis of kidney tissues, kidney function tests, and analyses of caspase-3 and CD44 expression and oxidative stress markers were performed to assess tubular injury. Histological analysis revealed marked tubular damage in groups A2 and B2 but improvement in groups A3 and B3. Improvements were also found in groups A3 and B3 for caspase-3 and CD44 expression, kidney function tests, and oxidative stress markers. Our results suggest ATO may ameliorate renal I/R injury differently between nondiabetic and diabetic rats.
Collapse
Affiliation(s)
- Sherif S Hassan
- a Department of Medical Education, California University of Science and Medicine, School of Medicine, San Bernardino, CA 92408, USA.,b Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, El-Manial Street, Cairo, Egypt
| | - Ayman Rizk
- b Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, El-Manial Street, Cairo, Egypt
| | - Charity Thomann
- a Department of Medical Education, California University of Science and Medicine, School of Medicine, San Bernardino, CA 92408, USA.,c School of Psychology, Fielding Graduate University, Santa Barbara, CA 93105, USA
| | - Ahmed Motawie
- b Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, El-Manial Street, Cairo, Egypt
| | - Shereen Abdelfattah
- b Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, El-Manial Street, Cairo, Egypt
| | - Zulfiqar Ahmad
- d Department of Biochemistry, A.T. Still University-Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| |
Collapse
|
9
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
10
|
Valiño-Rivas L, Baeza-Bermejillo C, Gonzalez-Lafuente L, Sanz AB, Ortiz A, Sanchez-Niño MD. CD74 in Kidney Disease. Front Immunol 2015; 6:483. [PMID: 26441987 PMCID: PMC4585214 DOI: 10.3389/fimmu.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/05/2015] [Indexed: 12/17/2022] Open
Abstract
CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ciro Baeza-Bermejillo
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Laura Gonzalez-Lafuente
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ana Belen Sanz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain ; School of Medicine, Universidad Autónoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| |
Collapse
|
11
|
Yishen Jiangzhuo Granules affect tubulointerstitial fibrosis via a mitochondrion-mediated apoptotic pathway. Chin J Integr Med 2015; 21:928-37. [PMID: 25956968 DOI: 10.1007/s11655-015-2078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the effect of Yishen Jiangzhuo Granules, YSJZG) on mitochondrial injury and regeneration and renal tubular epithelial cell apoptosis in chronic renal failure (CRF) rats and explore its mechanism from molecular pathology, gene, protein levels, and relative pathway. METHODS The CRF rat model was established using 5/6 nephrectomy. Sixty rats were randomly divided into six groups: sham-operation group, model (CRF) group, Niaoduqing Granules-treated group [5 g/(kg.day)], low-, moderate-, and high-dose [L-YSJZG, M-YSJZG, H-YSJZG at 3, 6, and 9 g/(kg day)] YSJZG-treated group (n=10 each). The levels of serum creatinine (Scr), blood urea nitrogen (BUN), and 24-h urine protein were assessed after 10 weeks of treatment. The tubulointerstitial injury and collagen deposition were evaluated using periodic acid-schiff stain and Masson staining. Renal tubular epithelial cell apoptosis was assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, mitochondrial injury was observed using an electron microscope, and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels were assessed using chromometry. Transforming growth factor-β1 (TGF-β1) expression was assessed using immunohistochemistry. The expressions of Bax, Bcl-2, peroxisome proliferator-activated receptor γ coactivator- 1α (PGC-1α), mitochondrial transcription factor A (Tfam), mitogen-activated protein kinases (MAPK) phosphorylation were evaluated by Western blot. RESULTS YSJZG decreased the 24-h urine protein, BUN, Scr, remnant kidney weight-to-body weight ratio, renal tubular injury, deposition of collagen, and the apoptosis of renal tubular epithelial cells in a dose-dependent manner. YSJZG dose-dependently restored the number and structure of mitochondria and the expression of Tfam and PCG-1α, up-regulated the expression of Bcl-2, and inhibited the expression of Bax. YSJZG also dose-dependently inhibited TGF-β1 expression, increased SOD and GSH activity, decreased the MDA level, and inhibited p38MAPK and pERK1/2 phosphorylation (all P<0.01). CONCLUSION YSJZG improved the renal function in rats with CRF and inhibited the progression of tubulointerstitial fibrosis by dose-dependently alleviating mitochondrial injury, restoring the expression of Tfam and PCG-1α, and inhibiting renal tubular epithelial cell apoptosis through inhibiting activation of reactive oxygen species-MAPK signaling.
Collapse
|
12
|
Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int 2015; 88:61-71. [PMID: 25715119 DOI: 10.1038/ki.2015.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is a pathological process that may lead to acute renal failure and chronic dysfunction in renal allografts. During IRI, hyaluronan (HA) accumulates in the kidney, but suppression of HA accumulation during IRI protects the kidney from ischemic insults. Here we tested whether Hyal1-/- and Hyal2-/- mice display exacerbated renal damage following unilateral IRI due to a higher HA accumulation in the post-ischemic kidney compared with that in the kidney of wild-type mice. Two days after IRI in male mice there was accumulation of HA and CD44 in the kidney, marked tubular damage, infiltration, and increase creatininemia in wild-type mice. Knockout mice exhibited higher amounts of HA and higher creatininemia. Seven days after injury, wild-type mice had a significant decrease in renal damage, but knockout mice still displayed exacerbated inflammation. HA and CD44 together with α-smooth muscle actin and collagen types I and III expression were increased in knockout compared with wild-type mice 30 days after IRI. Thus, both HA-degrading enzymes seem to be protective against IRI most likely by reducing HA accumulation in the post-ischemic kidney and decreasing the inflammatory processes. Deficiency in either HYAL1 or HYAL2 leads to enhanced HA accumulation in the post-ischemic kidney and consequently worsened inflammatory response, increased tubular damage, and fibrosis.
Collapse
|
13
|
Nishida H, Kurahashi T, Saito Y, Otsuki N, Kwon M, Ohtake H, Yamakawa M, Yamada KI, Miyata S, Tomita Y, Fujii J. Kidney fibrosis is independent of the amount of ascorbic acid in mice with unilateral ureteral obstruction. Free Radic Res 2014; 48:1115-24. [PMID: 24735064 DOI: 10.3109/10715762.2014.915031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In response to sustained damage to a kidney, fibrosis that can be characterized as the deposition of a collagenous matrix occurs and consequently causes chronic kidney failure. Because most animals used in experiments synthesize ascorbic acid (AsA) from glucose, the roles of AsA in fibrotic kidney diseases are largely unknown. Unilateral ureteric obstruction (UUO) mimics the complex pathophysiology of chronic obstructive nephropathy and is an ideal model for the investigation of the roles of AsA in kidney failure. We examined the impact of a deficiency of Akr1a, a gene that encodes aldehyde reductase and is responsible for the production of AsA, on fibrotic damage caused by UUO in mice. Oxidatively modified DNA was elevated in wild-type and Akr1a-deficient kidneys as a result of UUO to a similar extent, and was only slightly suppressed by the administration of AsA. Even though Akrla-deficient mice could produce only about 10% of the AsA produced by wild-type mice, no difference was observed in collagen I synthesis under pathological conditions. The data implied either a low demand for AsA or the presence of another electron donor for collagen I production in the mouse kidney. Next, we attempted to elucidate the potential causes for oxidative damage in kidney cells during the fibrotic change. We found decreases in mitochondrial proteins, particularly in electron transport complexes, at the initial stage of the kidney fibrosis. The data imply that a dysfunction of the mitochondria leads to an elevation of ROS, which results in kidney fibrosis by stimulating cellular transformation to myofibroblasts.
Collapse
Affiliation(s)
- H Nishida
- Department of Biochemistry and Molecular Biology, Yamagata University School of Medicine , Yamagata , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Colombaro V, Declèves AE, Jadot I, Voisin V, Giordano L, Habsch I, Nonclercq D, Flamion B, Caron N. Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury. Nephrol Dial Transplant 2014; 28:2484-93. [PMID: 24078641 DOI: 10.1093/ndt/gft314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ischaemia-reperfusion injury (IRI) to the kidney is a complex pathophysiological process that leads to acute renal failure and chronic dysfunction in renal allografts. It was previously demonstrated that during IRI, hyaluronan (HA) accumulates in the cortical and external medullary interstitium along with an increased expression of its main receptor, CD44, on inflammatory and tubular cells. The HA-CD44 pair may be involved in persistent post-ischaemic inflammation. Thus, we sought to determine the role of HA in the pathophysiology of ischaemia-reperfusion (IR) by preventing its accumulation in post-ischaemic kidney. METHODS C57BL/6 mice received a diet containing 4-methylumbelliferone (4-MU), a potent HA synthesis inhibitor. At the end of the treatment, unilateral renal IR was induced and mice were euthanized 48 h or 30 days post-IR. RESULTS 4-MU treatment for 14 weeks reduced the plasma HA level and intra-renal HA content at 48 h post-IR, as well as CD44 expression, creatininemia and histopathological lesions. Moreover, inflammation was significantly attenuated and proliferation was reduced in animals treated with 4-MU. In addition, 4-MU-treated mice had a significantly reduced expression of α-SMA and collagen types I and III, i.e. less renal fibrosis, 30 days after IR compared with untreated mice. CONCLUSION Our results demonstrate that HA plays a significant role in the pathogenesis of IRI, perhaps in part through reduced expression of CD44. The suppression of HA accumulation during IR may protect renal function against ischaemic insults.
Collapse
Affiliation(s)
- Vanessa Colombaro
- Molecular Physiology Research Unit (URPHYM)-NARILIS, University of Namur, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr Nephrol 2014; 29:333-42. [PMID: 23475077 PMCID: PMC3726573 DOI: 10.1007/s00467-013-2430-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/24/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) has reached worldwide epidemic proportions and desperately needs new therapies. Peritubular capillary (PTC) rarefaction, together with interstitial fibrosis and tubular atrophy, is one of the major hallmarks of CKD and predicts renal outcome in patients with CKD. PTC endothelial cells (ECs) undergo apoptosis during CKD, leading to capillary loss, tissue hypoxia, and oxidative stress. Although the mechanisms of PTC rarefaction are not well understood, the process of PTC rarefaction depends on multiple events that occur during CKD. These events, which lead to an antiangiogenic environment, include deprivation of EC survival factors, increased production of vascular growth inhibitors, malfunction of ECs, dysfunction of endothelial progenitor cells, and loss of EC integrity via pericyte detachment from the vasculature. In this review, we focus on major factors regulating angiogenesis and EC survival and describe the roles of these factors in PTC rarefaction during CKD and possible therapeutic applications.
Collapse
|
16
|
Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA, Sutterwala FS, Florquin S, Leemans JC. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. PLoS One 2014; 9:e85775. [PMID: 24454932 PMCID: PMC3893260 DOI: 10.1371/journal.pone.0085775] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/08/2013] [Indexed: 12/11/2022] Open
Abstract
Progressive renal disease is characterized by tubulo-interstitial injury with ongoing inflammation and fibrosis. The Nlrp3 inflammasome contributes to these pathophysiological processes through its canonical effects in cytokine maturation. Nlrp3 may additionally exert inflammasome-independent effects following tissue injury. Hence, in this study we investigated potential non-canonical effects of Nlrp3 following progressive renal injury by subjecting WT and Nlrp3-deficient (-/-) mice to unilateral ureter obstruction (UUO). Our results revealed a progressive increase of renal Nlrp3 mRNA in WT mice following UUO. The absence of Nlrp3 resulted in enhanced tubular injury and dilatation and an elevated expression of injury biomarker NGAL after UUO. Moreover, interstitial edema was significantly elevated in Nlrp3-/- mice. This could be explained by increased intratubular pressure and an enhanced tubular and vascular permeability. In accordance, renal vascular leakage was elevated in Nlrp3-/- mice that associated with reduced mRNA expression of intercellular junction components. The decreased epithelial barrier function in Nlrp3-/- mice was not associated with increased apoptosis and/or proliferation of renal epithelial cells. Nlrp3 deficiency did not affect renal fibrosis or inflammation. Together, our data reveal a novel non-canonical effect of Nlrp3 in preserving renal integrity and protection against early tubular injury and interstitial edema following progressive renal injury.
Collapse
Affiliation(s)
- Wilco P. Pulskens
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Loes M. Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwendoline J. Teske
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark C. Dessing
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, Connecticut, United States of America
| | - Fayyaz S. Sutterwala
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C. Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Tsuneki M, Madri JA. CD44 regulation of endothelial cell proliferation and apoptosis via modulation of CD31 and VE-cadherin expression. J Biol Chem 2014; 289:5357-70. [PMID: 24425872 DOI: 10.1074/jbc.m113.529313] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD44 has been implicated in a diverse array of cell behaviors and in a diverse range of signaling pathway activations under physiological and pathophysiological conditions. We have documented a role for CD44 in mediating vascular barrier integrity via regulation of PECAM-1 (CD31) expression. We now report our findings on the roles of CD44 in modulating proliferation and apoptosis of microvascular endothelial cells via its modulation of CD31 and VE-cadherin expression and the Hippo pathway. In this report, we demonstrate persistent increased proliferation and reduced activations of both effector and initiator caspases in high cell density, postconfluent CD44 knock-out (CD44KO), and CD31KO cultures. We found that reconstitution with murine CD44 or CD31 restored the proliferative and caspase activation rates to WT levels. Moreover, we have confirmed that the CD31 ecto-domain plays a key role in specific caspase cascades as well as cell adhesion-mediated cell growth and found that CD31 deficiency results in a reduction in VE-cadherin expression. Last, we have shown that both CD44KO and CD31KO endothelial cells exhibit a reduced VE-cadherin expression correlating with increased survivin expression and YAP nuclear localization, consistent with inactivation of the Hippo pathway, resulting in increased proliferation and decreased apoptosis. These findings support the concept that CD44 mediates several of its effects on endothelia through modulation of adhesion protein expression, which, in addition to its known modulation of junctional integrity, matrix metalloproteinase levels and activation, interactions with cortical membrane proteins, and selected signaling pathways, plays a key role as a critical regulator of vascular function.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | |
Collapse
|
18
|
Duitman J, Borensztajn KS, Pulskens WPC, Leemans JC, Florquin S, Spek CA. CCAAT-enhancer binding protein delta (C/EBPδ) attenuates tubular injury and tubulointerstitial fibrogenesis during chronic obstructive nephropathy. J Transl Med 2014; 94:89-97. [PMID: 24247561 DOI: 10.1038/labinvest.2013.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022] Open
Abstract
CCAAT-enhancer-binding protein delta (C/EBPδ) is a transcription factor mainly known for its role in inflammation and apoptosis/proliferation. Considering that these are key processes in renal fibrosis, we hypothesized that C/EBPδ would potentiate renal fibrosis. In line with this hypothesis, C/EBPδ has recently been suggested to regulate the fibrotic response during glomerulonephritis. Here we determined the importance of C/EBPδ in the development of renal tubulointerstitial fibrosis by subjecting 8- to 12-week-old C/EBPδ-deficient mice and age- and sex-matched wild-type controls to the unilateral ureteral obstruction model. Mice were killed at 1, 3, or 7 days post surgery, and renal tissues were obtained for RNA, protein, and immunohistochemical analysis. We show that C/EBPδ deficiency resulted in a more profound fibrotic response as evident from enhanced tubular injury, collagen deposition in the interstitial area, and higher expression of transforming growth factor-β. Moreover, we show that the increase in renal fibrosis in C/EBPδ-deficient mice does not depend on an altered proliferation/apoptosis balance or on a differential inflammatory response in the obstructed kidney. In conclusion, our study provides direct evidence that C/EBPδ is a novel mediator of renal fibrosis. Modulating C/EBPδ expression could consequently be a potential antifibrotic strategy in patients with chronic kidney disease.
Collapse
Affiliation(s)
- JanWillem Duitman
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Keren S Borensztajn
- Unité INSERM 700, Physiopathologie et Epidémiologie de l'Insuffisance Respiratoire, Faculté de Médecine Xavier Bichat, Paris, France
| | - Willem P C Pulskens
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- 1] Department of Pathology; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands [2] Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Role of TREM1-DAP12 in renal inflammation during obstructive nephropathy. PLoS One 2013; 8:e82498. [PMID: 24358193 PMCID: PMC3864959 DOI: 10.1371/journal.pone.0082498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/24/2013] [Indexed: 01/05/2023] Open
Abstract
Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-β1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.
Collapse
|
20
|
van der Loos CM, Teeling P. A Generally Applicable Sequential Alkaline Phosphatase Immunohistochemical Double Staining. J Histotechnol 2013. [DOI: 10.1179/his.2008.31.3.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Abstract
In recent years, it has become apparent that parietal epithelial cells (PECs) play an important role within the renal glomerulus, in particular in diseased conditions. In this review, we examine current knowledge about the role of PECs and their interactions with podocytes in development and under physiological conditions. A particular focus is on the crucial role of PECs and podocytes in two major glomerular disease entities. In rapidly progressive glomerulonephritis, PECs and podocytes proliferate and obstruct the tubular outlet, resulting in loss of the affected nephron. In focal and segmental glomerulosclerosis, PECs become activated and invade a segment of the glomerular tuft via an adhesion. From this entry site, activated PECs displace podocytes and deposit matrix. Thus, activated PECs are involved in inflammatory as well as degenerative glomerular diseases, which both can lead to irreversible loss of renal function.
Collapse
Affiliation(s)
- Bart Smeets
- Division of Nephrology and Immunology, Rheinisch-Westfaelische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | | |
Collapse
|
22
|
Abstract
Tubulointerstitial fibrosis mediates the development of end-stage renal disease from renal injuries of all etiologies and is considered an important predictor of renal survival. Transforming growth factor-β (TGF-β) is one of the most important growth factors that promotes tubulointerstitial fibrosis, but the mechanisms whereby this occurs are not well defined. This is because TGF-β has pleiotropic effects that depend on the target cell type. This review discusses how TGF-β signaling in each of the relevant cell types (eg, tubular epithelium, fibroblasts) may contribute to tubulointerstitial fibrosis progression and suggests ways in which future research can improve our understanding of TGF-β-mediated tubulointerstitial fibrosis.
Collapse
|
23
|
Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev 2012; 24:23-40. [PMID: 22959722 DOI: 10.1016/j.cytogfr.2012.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.
Collapse
|
24
|
The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. J Neurosci 2012; 32:4944-58. [PMID: 22492050 DOI: 10.1523/jneurosci.5868-11.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFβ, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.
Collapse
|
25
|
Forbes MS, Thornhill BA, Minor JJ, Gordon KA, Galarreta CI, Chevalier RL. Fight-or-flight: murine unilateral ureteral obstruction causes extensive proximal tubular degeneration, collecting duct dilatation, and minimal fibrosis. Am J Physiol Renal Physiol 2012; 303:F120-9. [PMID: 22535799 DOI: 10.1152/ajprenal.00110.2012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) is the most widely used animal model of progressive renal disease. Although renal interstitial fibrosis is commonly used as an end point, recent studies reveal that obstructive injury to the glomerulotubular junction leads to the formation of atubular glomeruli. To quantitate the effects of UUO on the remainder of the nephron, renal tubular and interstitial responses were characterized in mice 7 and 14 days after UUO or sham operation under anesthesia. Fractional proximal tubular mass, cell proliferation, and cell death were measured by morphometry. Superoxide formation was identified by nitro blue tetrazolium, and oxidant injury was localized by 4-hydroxynonenol and 8-hydroxydeoxyguanosine. Fractional areas of renal vasculature, interstitial collagen, α-smooth muscle actin, and fibronectin were also measured. After 14 days of UUO, the obstructed kidney loses 19% of parenchymal mass, with a 65% reduction in proximal tubular mass. Superoxide formation is localized to proximal tubules, which undergo oxidant injury, apoptosis, necrosis, and autophagy, with widespread mitochondrial loss, resulting in tubular collapse. In contrast, mitosis and apoptosis increase in dilated collecting ducts, which remain patent through epithelial cell remodeling. Relative vascular volume fraction does not change, and interstitial matrix components do not exceed 15% of total volume fraction of the obstructed kidney. These unique proximal and distal nephron cellular responses reflect differential "fight-or-flight" responses to obstructive injury and provide earlier indexes of renal injury than do interstitial compartment responses. Therapies to prevent or retard progression of renal disease should include targeting proximal tubule injury as well as interstitial fibrosis.
Collapse
Affiliation(s)
- Michael S Forbes
- Division of Pediatric Nephrology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
26
|
Yamaguchi I, Tchao BN, Burger ML, Yamada M, Hyodo T, Giampietro C, Eddy AA. Vascular endothelial cadherin modulates renal interstitial fibrosis. Nephron Clin Pract 2011; 120:e20-31. [PMID: 22126970 DOI: 10.1159/000332026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal interstitial fibrosis is a final common pathway of all chronic, progressive kidney diseases. Peritubular capillary rarefaction is strongly correlated with fibrosis. The adherens junction protein vascular endothelial cadherin (VE-cadherin) is thought to play a critical role in vascular integrity. We hypothesized that VE-cadherin modulates the renal microcirculation during fibrogenesis and ultimately affects renal fibrosis. METHODS Unilateral ureteral obstruction (UUO) was used as a renal fibrosis model in VE-cadherin heterozygote (VE+/-) and wild-type (WT) mice, and the kidneys were harvested at days 3, 7, and 14. Peritubular capillary changes and fibrogenesis were investigated. RESULTS VE+/- mice had lower levels of VE-cadherin protein than WT mice at 3 and 7, but not 14 days after UUO. Vascular permeability was significantly greater in VE+/- mice 7 days after UUO, while peritubular capillary density was not significantly different in VE+/- and WT mice. Interstitial myofibroblast numbers and collagen I and III mRNA levels were significantly higher in VE+/- mice, consistent with a stronger early fibrogenic response. Expression of the pericyte marker neuron-glial antigen 2 was upregulated after UUO, but was not greater in VE+/- mice compared to the WT mice. CONCLUSION Our data suggest that VE-cadherin controls vascular permeability and limits fibrogenesis after UUO.
Collapse
Affiliation(s)
- Ikuyo Yamaguchi
- Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Intragraft tubular vimentin and CD44 expression correlate with long-term renal allograft function and interstitial fibrosis and tubular atrophy. Transplantation 2010; 90:502-9. [PMID: 20588206 DOI: 10.1097/tp.0b013e3181e86b42] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Development of interstitial fibrosis and tubular atrophy (IF/TA) is the main histologic feature involved in renal allograft deterioration. The aim of this study was to validate whether de novo tubular expression of CD44 (transmembrane glycoprotein) and vimentin (mesenchymal cell marker), both involved in renal fibrosis, can operate as surrogate markers for late IF/TA and renal function. Furthermore, we wanted to establish the interrater reproducibility for the scoring system, which can be a problem in histologic assessments. METHODS Six-month protocol renal allograft biopsies (n=30 for matching 12 months estimated glomerular filtration rate (eGFR) from which 20 matched the 12-month protocol biopsy) were immunostained for CD44 and vimentin, semiquantitatively scored by three observers of two centers, and correlated with IF/TA and eGFR at 12 months. RESULTS The interobserver agreement was excellent for CD44 (Kendall's W-coefficient: 0.69; P<0.001) and vimentin (Kendall's W-coefficient: 0.79; P<0.001). CD44 and vimentin expression at 6 months were significantly correlated with IF/TA (rho=0.481 for CD44 and rho=0.619 for vimentin) and eGFR (rho=-0.569 for CD44 and rho=-0.376 for vimentin) at 12 months. CONCLUSIONS Summarizing, de novo tubular expression of CD44 and vimentin can function as surrogate marker for IF/TA and eGFR at 12 months. Further area under receiver operator characteristic curve analysis has to establish the predictive value for both biomarkers.
Collapse
|
28
|
Dendooven A, Ishola DA, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA. Oxidative stress in obstructive nephropathy. Int J Exp Pathol 2010; 92:202-10. [PMID: 20804541 DOI: 10.1111/j.1365-2613.2010.00730.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Amélie Dendooven
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, Boorman GA, Russo MW, Sackler RS, Harris SC, Smith PC, Tennant R, Bogue M, Paigen K, Harris C, Contractor T, Wiltshire T, Rusyn I, Threadgill DW. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res 2009; 19:1507-15. [PMID: 19416960 DOI: 10.1101/gr.090241.108] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interindividual variability in response to chemicals and drugs is a common regulatory concern. It is assumed that xenobiotic-induced adverse reactions have a strong genetic basis, but many mechanism-based investigations have not been successful in identifying susceptible individuals. While recent advances in pharmacogenetics of adverse drug reactions show promise, the small size of the populations susceptible to important adverse events limits the utility of whole-genome association studies conducted entirely in humans. We present a strategy to identify genetic polymorphisms that may underlie susceptibility to adverse drug reactions. First, in a cohort of healthy adults who received the maximum recommended dose of acetaminophen (4 g/d x 7 d), we confirm that about one third of subjects develop elevations in serum alanine aminotransferase, indicative of liver injury. To identify the genetic basis for this susceptibility, a panel of 36 inbred mouse strains was used to model genetic diversity. Mice were treated with 300 mg/kg or a range of additional acetaminophen doses, and the extent of liver injury was quantified. We then employed whole-genome association analysis and targeted sequencing to determine that polymorphisms in Ly86, Cd44, Cd59a, and Capn8 correlate strongly with liver injury and demonstrated that dose-curves vary with background. Finally, we demonstrated that variation in the orthologous human gene, CD44, is associated with susceptibility to acetaminophen in two independent cohorts. Our results indicate a role for CD44 in modulation of susceptibility to acetaminophen hepatotoxicity. These studies demonstrate that a diverse mouse population can be used to understand and predict adverse toxicity in heterogeneous human populations through guided resequencing.
Collapse
Affiliation(s)
- Alison H Harrill
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
RECOMBINANT HUMAN SOLUBLE TUMOR NECROSIS FACTOR-ALPHA RECEPTOR FUSION PROTEIN PARTLY ATTENUATES VENTILATOR-INDUCED LUNG INJURY. Shock 2009; 31:262-6. [DOI: 10.1097/shk.0b013e31817d42dd] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Ronco P, Chatziantoniou C. Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: therapeutic perspectives. Kidney Int 2008; 74:873-8. [DOI: 10.1038/ki.2008.349] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Naor D, Nedvetzki S, Walmsley M, Yayon A, Turley EA, Golan I, Caspi D, Sebban LE, Zick Y, Garin T, Karussis D, Assayag-Asherie N, Raz I, Weiss L, Slavin S, Golan I. CD44 involvement in autoimmune inflammations: the lesson to be learned from CD44-targeting by antibody or from knockout mice. Ann N Y Acad Sci 2007; 1110:233-47. [PMID: 17911438 DOI: 10.1196/annals.1423.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CD44 is a multistructural and multifunctional glycoprotein, the diversity of which is generated by alternative splicing. In this communication we review some aspects related to CD44 structure and function in experimental autoimmune inflammation, focusing on research performed in our own laboratory. We have found that CD44 targeting by antibody, passively injected into DBA/1 mice with collagen-induced arthritis (CIA) and NOD mice with type I diabetes or actively generated by CD44 cDNA vaccination of SJL/j mice with autoimmune encephalomyelitis, markedly reduced the pathological manifestations of these diseases by attenuating cell migration of the inflammatory cells and/or by their apoptotic killing. However, genetic deletion of CD44 by knockout technology enhanced the development of CIA because of molecular redundancy mediated by RHAMM (a receptor of hyaluronan-mediated motility). The mechanisms that stand behind these findings are discussed.
Collapse
Affiliation(s)
- David Naor
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|