1
|
Berlingerio SP, Bondue T, Tassinari S, Siegerist F, Ferrulli A, Lismont C, Cairoli S, Goffredo BM, Ghesquière B, Fransen M, Endlich N, Oliveira Arcolino F, Bussolati B, van den Heuvel L, Levtchenko E. Targeting oxidative stress-induced lipid peroxidation enhances podocyte function in cystinosis. J Transl Med 2025; 23:206. [PMID: 39980044 PMCID: PMC11844038 DOI: 10.1186/s12967-024-05996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/15/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cystinosis is a rare, incurable lysosomal storage disease caused by mutations in the CTNS gene encoding the cystine transporter cystinosin, which leads to lysosomal cystine accumulation in all cells of the body. Patients with cystinosis display signs of podocyte damage characterized by extensive loss of podocytes into the urine at early disease stages, glomerular proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) lesions. Although standard treatment with cysteamine decreases cellular cystine levels, it neither reverses glomerular injury nor prevents the loss of podocytes. Thus, pathogenic mechanisms other than cystine accumulation are involved in podocyte dysfunction in cystinosis. METHODS We used immortalized patient-derived cystinosis, healthy, and CTNS knockdown podocytes to investigate podocyte dysfunction in cystinosis. The results were validated in our newly in-house developed fluorescent ctns-/-[Tg(fabp10a:gc-EGFP)] zebrafish larvae model. To understand impaired podocyte functionality, static and dynamic permeability assays, tracer-metabolomic analysis, flow cytometry, western blot, and chemical and dynamic redox-sensing fluorescent probes were used. RESULTS In the current study, we discovered that cystinosis podocytes demonstrate increased ferroptotic cell death caused by mitochondrial reactive oxygen species (ROS)-driven membrane lipid peroxidation. Moreover, cystinosis cells present a fragmented mitochondrial network with impaired tricarboxylic acid cycle (TCA) cycle and energy metabolism. Targeting mitochondrial ROS and lipid peroxidation improved podocyte function in vitro and rescued proteinuria in vivo in cystinosis zebrafish larvae. CONCLUSIONS Mitochondrial ROS contribute to podocyte injury in cystinosis by driving lipid peroxidation and ferroptosis, which in turn lead to podocyte detachment. This finding adds cystinosis to the list of podocytopathies associated with mitochondrial dysfunction. The identified mechanisms reveal new therapeutic targets and highlight lipid peroxidation as an exploitable vulnerability of cystinosis podocytes.
Collapse
Affiliation(s)
- Sante Princiero Berlingerio
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Sarah Tassinari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Florian Siegerist
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Angela Ferrulli
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Bart Ghesquière
- Metabolomics Expertise Center, Department of Cellular and Molecular Medicine, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Fanny Oliveira Arcolino
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Zhang YY, Zhou XT, Huang GZ, Liao WJ, Chen X, Ma YR. The pro-fibrotic role of autophagy in renal intrinsic cells: mechanisms and therapeutic potential in chronic kidney disease. Front Cell Dev Biol 2024; 12:1499457. [PMID: 39723243 PMCID: PMC11669005 DOI: 10.3389/fcell.2024.1499457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic kidney disease (CKD) represents a significant global public health burden, affecting over 10% of the world's population. Its high morbidity, multifactorial complications, and substantial mortality impose significant burdens on healthcare systems and patients, necessitating considerable investment in healthcare resources. Renal fibrosis (RF) is a key pathological feature and driver of CKD progression. Extensive research indicates that autophagy participates in the complete pathogenesis of RF. Under physiological conditions, autophagy is essential for maintaining renal cellular homeostasis. However, under pathological conditions, perhaps aberrant and sustained activation of autophagy contributes to oxidative stress, apoptosis, inflammation, etc. Ultimately, they accelerate the development of RF. The role of autophagy in RF is currently controversial. This review investigates the molecular mechanisms by which intrinsic renal cell autophagy contributes to RF across diverse disease models, suggesting that autophagy and its associated regulatory pathways represent potential diagnostic and therapeutic targets for CKD.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Tao Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Geng-Zhen Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu second people’s Hospital, Chengdu, China
| | - Wen-Jun Liao
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Bellomo F, Pugliese S, Cairoli S, Krohn P, De Stefanis C, Raso R, Rega LR, Taranta A, De Leo E, Ciolfi A, Cicolani N, Petrini S, Luciani A, Goffredo BM, Porzio O, Devuyst O, Dionisi-Vici C, Emma F. Ketogenic Diet and Progression of Kidney Disease in Animal Models of Nephropathic Cystinosis. J Am Soc Nephrol 2024; 35:1493-1506. [PMID: 38995697 PMCID: PMC11543012 DOI: 10.1681/asn.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Key Points Ketogenic diet can change the metabolism in the body and helped restore the function of altered pathways in nephropathic cystinosis. Ketogenic diet had significant benefits for preventing kidney damage, even when initiated after the onset of kidney impairment. Ketogenic diet may provide a partial therapeutic alternative in countries where cysteamine therapy is too expensive. Background Nephropathic cystinosis is a rare inherited lysosomal storage disorder caused by mutations in the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. From the standpoint of the kidneys, patients develop early-onset renal Fanconi syndrome and progressive CKD. Current therapy with cysteamine delays but does not prevent kidney failure and has significant side effects that limit adherence and reduce the quality of life of patients. Methods We have tested biochemically and histologically the effects of ketogenic diet on kidney disease of two animal models of nephropathic cystinosis. Results When Ctns −/− mice were fed with ketogenic diet from 3 to 12 months of age, we observed significant nearly complete prevention of Fanconi syndrome, including low molecular weight proteinuria, glycosuria, and polyuria. Compared with wild-type animals, BUN at 12 months was higher in cystinotic mice fed with standard diet (P < 0.001), but not with ketogenic diet. At sacrifice, kidneys of knockout mice fed with ketogenic diet appeared macroscopically similar to those of wild-type animals, which was reflected microscopically by a significant reduction of interstitial cell infiltration (CD3 and CD68 positive cells, P < 0.01), of interstitial fibrosis (Masson and α -smooth muscle actin staining, P < 0.001), and of apoptosis (cleaved caspase-3 levels; P < 0.001), and by indirect evidence of restoration of a normal autophagic flux (SQSTM1/p62 and LC3-II expression, P < 0.05). Beneficial effects of ketogenic diet on tubular function were also observed after mice were fed with this ketogenic diet from the age of 6 months to the age of 15 months, after they had developed proximal tubular dysfunction. Although slightly less pronounced, these results were replicated in Ctns −/− rats fed with ketogenic diet from 2 to 8 months of life. Conclusions These results indicate significant mitigation of the kidney phenotype in cystinotic animals fed with ketogenic diet.
Collapse
Affiliation(s)
- Francesco Bellomo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Pugliese
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Patrick Krohn
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roberto Raso
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Laura Rita Rega
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Anna Taranta
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ester De Leo
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Biochemistry Laboratory, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Emma
- Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
4
|
Ponticelli C, Reggiani F, Moroni G. Autophagy: A Silent Protagonist in Kidney Transplantation. Transplantation 2024; 108:1532-1541. [PMID: 37953477 DOI: 10.1097/tp.0000000000004862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Autophagy is a lysosome-dependent regulated mechanism that recycles unnecessary cytoplasmic components. It is now known that autophagy dysfunction may have a pathogenic role in several human diseases and conditions, including kidney transplantation. Both defective and excessive autophagy may induce or aggravate several complications of kidney transplantation, such as ischemia-reperfusion injury, alloimmune response, and immunosuppressive treatment and side effects. Although it is still complicated to measure autophagy levels in clinical practice, more attention should be paid to the factors that may influence autophagy. In kidney transplantation, the association of low doses of a mammalian target of rapamycin inhibitor with low doses of a calcineurin inhibitor may be of benefit for autophagy modulation. However, further studies are needed to explore the role of other autophagy regulators.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
5
|
Ren YL, Liang Q, Lian CY, Zhang W, Wang L. Melatonin alleviates glyphosate-induced testosterone synthesis inhibition via targeting mitochondrial function in roosters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123828. [PMID: 38522604 DOI: 10.1016/j.envpol.2024.123828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.
Collapse
Affiliation(s)
- Yu-Long Ren
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Qing Liang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Cai-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Wei Zhang
- Yantai Academy of Agricultural Sciences, Yan'tai City 265500, Shandong Province, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
6
|
Rossi MN, Matteo V, Diomedi-Camassei F, De Leo E, Devuyst O, Lamkanfi M, Caiello I, Loricchio E, Bellomo F, Taranta A, Emma F, De Benedetti F, Prencipe G. Nlrp2 deletion ameliorates kidney damage in a mouse model of cystinosis. Front Immunol 2024; 15:1373224. [PMID: 38633264 PMCID: PMC11021658 DOI: 10.3389/fimmu.2024.1373224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.
Collapse
Affiliation(s)
- Marianna Nicoletta Rossi
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Valentina Matteo
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesca Diomedi-Camassei
- Department of Laboratories, Pathology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Ester De Leo
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Ivan Caiello
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Elena Loricchio
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesco Bellomo
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Anna Taranta
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Fabrizio De Benedetti
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| |
Collapse
|
7
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
8
|
Thiyagarajan R, Taub M. Studies with Human-Induced Pluripotent Stem Cells Reveal That CTNS Mutations Can Alter Renal Proximal Tubule Differentiation. Int J Mol Sci 2023; 24:17004. [PMID: 38069326 PMCID: PMC10707122 DOI: 10.3390/ijms242317004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cystinosis is an autosomal recessive disease resulting from mutations in ctns, which encodes for cystinosin, a proton-coupled cystine transporter that exports cystine from lysosomes. The major clinical form, infantile cystinosis, is associated with renal failure due to the malfunctioning of the renal proximal tubule (RPT). To examine the hypothesis that the malfunctioning of the cystinotic RPT arises from defective differentiation, human-induced pluripotent stem cells (hiPSCs) were generated from human dermal fibroblasts from an individual with infantile cystinosis, as well as a normal individual. The results indicate that both the cystinotic and normal hiPSCs are pluripotent and can form embryoid bodies (EBs) with the three primordial germ layers. When the normal hiPSCs were subjected to a differentiation regime that induces RPT formation, organoids containing tubules with lumens emerged that expressed distinctive RPT proteins, including villin, the Na+/H+ Exchanger (NHE) isoform 3 (NHE3), and the NHE Regulatory Factor 1 (NHERF1). The formation of tubules with lumens was less pronounced in organoids derived from cystinotic hiPSCs, although the organoids expressed villin, NHE3, and NHERF1. These observations can be attributed to an impairment in differentiation and/or by other defects which cause cystinotic RPTs to have an increased propensity to undergo apoptosis or other types of programmed cell death.
Collapse
Affiliation(s)
- Ramkumar Thiyagarajan
- Division of Geriatric Medicine, University of Kansas Medical Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Mary Taub
- Biochemistry Department, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
9
|
Guo H, Bechtel-Walz W. The Interplay of Autophagy and Oxidative Stress in the Kidney: What Do We Know? Nephron Clin Pract 2023; 147:627-642. [PMID: 37442108 DOI: 10.1159/000531290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Autophagy, as an indispensable metabolism, plays pivotal roles in maintaining intracellular homeostasis. Nutritional stress, amino acid deficiency, oxidative stress, and hypoxia can trigger its initiation. Oxidative stress in the kidney activates essential signal molecules, like mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), and silent mating-type information regulation 2 homolog-1 (SIRT1), to stimulate autophagy, ultimately leading to degradation of intracellular oxidative substances and damaged organelles. Growing evidence suggests that autophagy protects the kidney from oxidative stress during acute ischemic kidney injury, chronic kidney disease, and even aging. SUMMARY This review emphasizes the cross talk between reactive oxygen species (ROS) signaling pathways and autophagy during renal homeostasis and chronic kidney disease according to the current latest research and provides therapeutic targets during kidney disorders by adjusting autophagy and suppressing oxidative stress. KEY MESSAGES ROS arise through an imbalance of oxidation and antioxidant defense mechanisms, leading to impaired cellular and organ function. Targeting the overproduction of ROS and reactive nitrogen species, reducing the antioxidant enzyme activity and the recovery of the prooxidative-antioxidative balance provide novel therapeutic regimens to contribute to recovery in acute and chronic renal failure. Although, in recent years, great progress has been made in understanding the molecular mechanisms of oxidative stress and autophagy in acute and chronic renal failure, the focus on clinical therapies is still in its infancy. The growing number of studies on the interactive mechanisms of oxidative stress-mediated autophagy will be of great importance for the future treatment and prevention of kidney diseases.
Collapse
Affiliation(s)
- Haihua Guo
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wibke Bechtel-Walz
- Renal Division, Department of Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
10
|
Yin S, Zhou Z, Fu P, Jin C, Wu P, Ji C, Shan Y, Shi L, Xu M, Qian H. Roles of extracellular vesicles in ageing-related chronic kidney disease: demon or angel. Pharmacol Res 2023:106795. [PMID: 37211241 DOI: 10.1016/j.phrs.2023.106795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Ageing is a universal and unavoidable phenomenon that significantly increases the risk of developing chronic kidney disease (CKD). It has been reported that ageing is associated with functional disruption and structural damage to the kidneys. Extracellular vesicles (EVs), which are nanoscale membranous vesicles containing lipids, proteins, and nucleic acids, are secreted by cells into the extracellular spaces. They have diverse functions such as repairing and regenerating different forms of ageing-related CKD and playing a crucial role in intercellular communication. This paper reviews the etiology of ageing in CKD, with particular attention paid to the roles of EVs as carriers of ageing signals and anti-ageing therapeutic strategies in CKD. In this regard, the double-edged role of EVs in ageing-related CKD is examined, along with the potential for their application in clinical settings.
Collapse
Affiliation(s)
- Siqi Yin
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Peiwen Fu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Cheng Ji
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunjie Shan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Min Xu
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
11
|
Sk S, Majumder A, Sow P, Samadder A, Bera M. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. J Inorg Biochem 2023; 243:112182. [PMID: 36933342 DOI: 10.1016/j.jinorgbio.2023.112182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
The present article describes the systematic study on design and synthesis, physicochemical properties and spectroscopic features, and potential anticancer activities of a family of novel copper(II)-based designer metal complexes [Cu2(acdp)(μ-Cl)(H2O)2] (1), [Cu2(acdp)(μ-NO3)(H2O)2] (2) and [Cu2(acdp)(μ-O2CCF3)(H2O)2] (3) of anthracene-appended polyfunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol). Synthesis of 1-3 was accomplished under facile experimental conditions, preserving their overall integrity in solution. The incorporation of polycyclic anthracene skeleton within the backbone of organic assembly increases lipophilicity of resulting complexes, thereby dictating the degree of cellular uptake with improved biological activity. Complexes 1-3 were characterized by elemental analysis, molar conductance, FTIR, UV-Vis absorption/fluorescence emission titration spectroscopy, PXRD and TGA/DTA studies, including DFT calculations. The cellular cytotoxicity of 1-3 when studied in HepG2 cancer cell line showed substantial cytotoxic effects, whereas no such cytotoxicity was observed when exposed to normal L6 skeletal muscle cell line. Thereafter, the signaling factors involved in the process of cytotoxicity in HepG2 cancer cells were investigated. Alteration of cytochrome c and Bcl-2 protein expression levels along with modulation of mitochondrial membrane potential (MMP) in the presence of 1-3, strongly suggested the possibility of activating mitochondria-mediated apoptotic pathway involved in halting the cancer cell propagation. However, when a comparative assessment on their bio-efficacies was made, 1 showed higher cytotoxicity, nuclear condensation, DNA binding and damage, ROS generation and lower rate of cell proliferation compared to 2 and 3 in HepG2 cell line, indicating that the anticancer activity of 1 is significantly higher than that of 2 and 3.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Priyanka Sow
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| |
Collapse
|
12
|
Keidel LF, Schworm B, Hohenfellner K, Kruse F, Priglinger S, Luft N, Priglinger C. Posterior Segment Involvement in Infantile Nephropathic Cystinosis - A Review. Klin Monbl Augenheilkd 2023; 240:266-275. [PMID: 36977427 DOI: 10.1055/s-0037-1599653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cystinosis is a rare lysosomal storage disease with a prevalence of 1 : 100 000 - 1 : 200 000 cases. It is caused by biallelic mutations in the CTNS gene, which encodes cystinosin, that transport cystine out of the lysosomes. Due to its dysfunction, cystine crystals accumulate in the lysosomes and ultimately cause apoptosis of the cell. Since cystinosin is ubiquitously present in the body, cystine crystals are deposited in every body structure and lead to the dysfunction of various organ systems in the course of time. Cystine crystals deposited in the cornea are a clinical hallmark of the disease, while there is less awareness of concomitant posterior segment alterations. Symmetrical pigment epithelial mottling and patches of depigmentation frequently start in the periphery and progress towards the posterior pole and can be encountered upon fundus biomicroscopy. Spectral-domain optical coherence tomography (SD-OCT) is an elegant tool for visualizing chorioretinal cystine crystals at the posterior pole. An SD-OCT-based clinical grading of the severity of the chorioretinal manifestation can potentially be applied as a biomarker for systemic disease status and for monitoring oral therapy adherence in the future. Along with previous histological examinations, it may also give information about the location of cystine crystals in the choroid and retina. This review aims to increase the awareness of vision-threatening retinal and choroidal changes in cystinosis and the concomitant findings in SD-OCT.
Collapse
Affiliation(s)
| | - Benedikt Schworm
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| | | | - Franziska Kruse
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| | | | - Nikolaus Luft
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
13
|
Metabolomic Analyses to Identify Candidate Biomarkers of Cystinosis. Int J Mol Sci 2023; 24:ijms24032603. [PMID: 36768921 PMCID: PMC9916752 DOI: 10.3390/ijms24032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.
Collapse
|
14
|
Dai R, Zhang L, Jin H, Wang D, Cheng M, Sang T, Peng C, Li Y, Wang Y. Autophagy in renal fibrosis: Protection or promotion? Front Pharmacol 2022; 13:963920. [PMID: 36105212 PMCID: PMC9465674 DOI: 10.3389/fphar.2022.963920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a process that degrades endogenous cellular protein aggregates and damaged organelles via the lysosomal pathway to maintain cellular homeostasis and energy production. Baseline autophagy in the kidney, which serves as a quality control system, is essential for cellular metabolism and organelle homeostasis. Renal fibrosis is the ultimate pathological manifestation of progressive chronic kidney disease. In several experimental models of renal fibrosis, different time points, stimulus intensities, factors, and molecular mechanisms mediating the upregulation or downregulation of autophagy may have different effects on renal fibrosis. Autophagy occurring in a single lesion may also exert several distinct biological effects on renal fibrosis. Thus, whether autophagy prevents or facilitates renal fibrosis remains a complex and challenging question. This review explores the different effects of the dual regulatory function of autophagy on renal fibrosis in different renal fibrosis models, providing ideas for future work in related basic and clinical research.
Collapse
Affiliation(s)
- Rong Dai
- Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Zhang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Jin
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dong Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tian Sang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Chuyi Peng
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Li
- Blood Purification Center, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Yiping Wang,
| |
Collapse
|
15
|
Lee SJ, Kim YA, Park KK. Anti-Fibrotic Effect of Synthetic Noncoding Decoy ODNs for TFEB in an Animal Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158138. [PMID: 35897713 PMCID: PMC9330689 DOI: 10.3390/ijms23158138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Despite emerging evidence suggesting that autophagy occurs during renal interstitial fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized TFEB decoy oligonucleotides (ODNs) into the tail veins of unilateral ureteral obstruction (UUO) mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and collagen was decreased by TFEB decoy ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated protein light chain 3 (LC3), Beclin1, and hypoxia-inducible factor-1α (HIF-1α). We confirmed that TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising therapeutic strategy against kidney diseases.
Collapse
|
16
|
Programmed Cell Death in Cystinosis. Cells 2022; 11:cells11040670. [PMID: 35203319 PMCID: PMC8870229 DOI: 10.3390/cells11040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cystinosis is a lethal autosomal recessive disease that has been known clinically for over 100 years. There are now specific treatments including dialysis, renal transplantation and the orphan drug, cysteamine, which greatly improve the duration and quality of patient life, however, the cellular mechanisms responsible for the phenotype are unknown. One cause, programmed cell death, is clearly involved. Study of extant literature via Pubmed on “programmed cell death” and “apoptosis” forms the basis of this review. Most of such studies involved apoptosis. Numerous model systems and affected tissues in cystinosis have shown an increased rate of apoptosis that can be partially reversed with cysteamine. Proposed mechanisms have included changes in protein signaling pathways, autophagy, gene expression programs, and oxidative stress.
Collapse
|
17
|
Elmonem MA, Veys KRP, Prencipe G. Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies. Cells 2022; 11:cells11020190. [PMID: 35053306 PMCID: PMC8773784 DOI: 10.3390/cells11020190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023] Open
Abstract
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.
Collapse
Affiliation(s)
- Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
- Correspondence:
| | - Koenraad R. P. Veys
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Pediatrics, AZ Delta Campus, 8820 Torhout, Belgium
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
18
|
Bioengineered Cystinotic Kidney Tubules Recapitulate a Nephropathic Phenotype. Cells 2022; 11:cells11010177. [PMID: 35011739 PMCID: PMC8750898 DOI: 10.3390/cells11010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Nephropathic cystinosis is a rare and severe disease caused by disruptions in the CTNS gene. Cystinosis is characterized by lysosomal cystine accumulation, vesicle trafficking impairment, oxidative stress, and apoptosis. Additionally, cystinotic patients exhibit weakening and leakage of the proximal tubular segment of the nephrons, leading to renal Fanconi syndrome and kidney failure early in life. Current in vitro cystinotic models cannot recapitulate all clinical features of the disease which limits their translational value. Therefore, the development of novel, complex in vitro models that better mimic the disease and exhibit characteristics not compatible with 2-dimensional cell culture is of crucial importance for novel therapies development. In this study, we developed a 3-dimensional bioengineered model of nephropathic cystinosis by culturing conditionally immortalized proximal tubule epithelial cells (ciPTECs) on hollow fiber membranes (HFM). Cystinotic kidney tubules showed lysosomal cystine accumulation, increased autophagy and vesicle trafficking deterioration, the impairment of several metabolic pathways, and the disruption of the epithelial monolayer tightness as compared to control kidney tubules. In particular, the loss of monolayer organization and leakage could be mimicked with the use of the cystinotic kidney tubules, which has not been possible before, using the standard 2-dimensional cell culture. Overall, bioengineered cystinotic kidney tubules recapitulate better the nephropathic phenotype at a molecular, structural, and functional proximal tubule level compared to 2-dimensional cell cultures.
Collapse
|
19
|
Cheung PY, Harrison PT, Davidson AJ, Hollywood JA. In Vitro and In Vivo Models to Study Nephropathic Cystinosis. Cells 2021; 11:6. [PMID: 35011573 PMCID: PMC8750259 DOI: 10.3390/cells11010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
The development over the past 50 years of a variety of cell lines and animal models has provided valuable tools to understand the pathophysiology of nephropathic cystinosis. Primary cultures from patient biopsies have been instrumental in determining the primary cause of cystine accumulation in the lysosomes. Immortalised cell lines have been established using different gene constructs and have revealed a wealth of knowledge concerning the molecular mechanisms that underlie cystinosis. More recently, the generation of induced pluripotent stem cells, kidney organoids and tubuloids have helped bridge the gap between in vitro and in vivo model systems. The development of genetically modified mice and rats have made it possible to explore the cystinotic phenotype in an in vivo setting. All of these models have helped shape our understanding of cystinosis and have led to the conclusion that cystine accumulation is not the only pathology that needs targeting in this multisystemic disease. This review provides an overview of the in vitro and in vivo models available to study cystinosis, how well they recapitulate the disease phenotype, and their limitations.
Collapse
Affiliation(s)
- Pang Yuk Cheung
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| | - Patrick T. Harrison
- Department of Physiology, BioSciences Institute, University College Cork, T12 XF62 Cork, Ireland;
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| | - Jennifer A. Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1142, New Zealand; (P.Y.C.); (A.J.D.)
| |
Collapse
|
20
|
RNA-Protein Interaction Analysis of SARS-CoV-2 5' and 3' Untranslated Regions Reveals a Role of Lysosome-Associated Membrane Protein-2a during Viral Infection. mSystems 2021; 6:e0064321. [PMID: 34254825 PMCID: PMC8407388 DOI: 10.1128/msystems.00643-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus. The viral genome is capped at the 5′ end, followed by an untranslated region (UTR). There is a poly(A) tail at the 3′ end, preceded by a UTR. The self-interaction between the RNA regulatory elements present within the 5′ and 3′ UTRs and their interaction with host/virus-encoded proteins mediate the function of the 5′ and 3′ UTRs. Using an RNA-protein interaction detection (RaPID) assay coupled to liquid chromatography with tandem mass spectrometry, we identified host interaction partners of SARS-CoV-2 5′ and 3′ UTRs and generated an RNA-protein interaction network. By combining these data with the previously known protein-protein interaction data proposed to be involved in virus replication, we generated the RNA-protein-protein interaction (RPPI) network, likely to be essential for controlling SARS-CoV-2 replication. Notably, bioinformatics analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism. Lysosome-associated membrane protein-2a (Lamp2a), the receptor for chaperone-mediated autophagy, is one of the host proteins that interact with the 5′ UTR. Further studies showed that the Lamp2 level is upregulated in SARS-CoV-2-infected cells and that the absence of the Lamp2a isoform enhanced the viral RNA level whereas its overexpression significantly reduced the viral RNA level. Lamp2a and viral RNA colocalize in the infected cells, and there is an increased autophagic flux in infected cells, although there is no change in the formation of autophagolysosomes. In summary, our study provides a useful resource of SARS-CoV-2 5′ and 3′ UTR binding proteins and reveals the role of Lamp2a protein during SARS-CoV-2 infection. IMPORTANCE Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5′ and 3′ UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication. Here, we identified the host proteins that associate with the UTRs of SARS-CoV-2, combined those data with the previously known protein-protein interaction data (expected to be involved in virus replication), and generated the RNA-protein-protein interaction (RPPI) network. Analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism, which are important for virus replication. Analysis of one of the interaction partners of the 5′-UTR (Lamp2a) demonstrated its role in reducing the viral RNA level in SARS-CoV-2-infected cells. Collectively, our study provides a resource of SARS-CoV-2 UTR-binding proteins and identifies an important role for host Lamp2a protein during viral infection.
Collapse
|
21
|
Jamalpoor A, van Gelder CAGH, Yousef Yengej FA, Zaal EA, Berlingerio SP, Veys KR, Pou Casellas C, Voskuil K, Essa K, Ammerlaan CME, Rega LR, van der Welle REN, Lilien MR, Rookmaaker MB, Clevers H, Klumperman J, Levtchenko E, Berkers CR, Verhaar MC, Altelaar M, Masereeuw R, Janssen MJ. Cysteamine-bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Mol Med 2021; 13:e13067. [PMID: 34165243 PMCID: PMC8261496 DOI: 10.15252/emmm.202013067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Nephropathic cystinosis is a severe monogenic kidney disorder caused by mutations in CTNS, encoding the lysosomal transporter cystinosin, resulting in lysosomal cystine accumulation. The sole treatment, cysteamine, slows down the disease progression, but does not correct the established renal proximal tubulopathy. Here, we developed a new therapeutic strategy by applying omics to expand our knowledge on the complexity of the disease and prioritize drug targets in cystinosis. We identified alpha-ketoglutarate as a potential metabolite to bridge cystinosin loss to autophagy, apoptosis and kidney proximal tubule impairment in cystinosis. This insight combined with a drug screen revealed a bicalutamide-cysteamine combination treatment as a novel dual-target pharmacological approach for the phenotypical correction of cystinotic kidney proximal tubule cells, patient-derived kidney tubuloids and cystinotic zebrafish.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Charlotte AGH van Gelder
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CenterUtrechtThe Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Division of Cell Biology, Cancer & MetabolismDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Sante P Berlingerio
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Koenraad R Veys
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Carla Pou Casellas
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Koen Voskuil
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Khaled Essa
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Carola ME Ammerlaan
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laura Rita Rega
- Renal Diseases Research Unit, Genetics and Rare Diseases Research AreaBambino Gesù Children’s HospitalIRCCSRomeItaly
| | - Reini EN van der Welle
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marc R Lilien
- Department of Pediatric NephrologyWilhelmina Children’s HospitalUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans Clevers
- Hubrecht Institute‐Royal Netherlands Academy of Arts and Sciences and University Medical Center UtrechtUtrechtThe Netherlands
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and RegenerationUniversity Hospitals Leuven & KU LeuvenLeuvenBelgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Division of Cell Biology, Cancer & MetabolismDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
- Netherlands Proteomics CenterUtrechtThe Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Manoe J Janssen
- Division of PharmacologyDepartment of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
22
|
Jamalpoor A, Othman A, Levtchenko EN, Masereeuw R, Janssen MJ. Molecular Mechanisms and Treatment Options of Nephropathic Cystinosis. Trends Mol Med 2021; 27:673-686. [PMID: 33975805 DOI: 10.1016/j.molmed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Amr Othman
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Elena N Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven & KU Leuven, Leuven, Belgium
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| | - Manoe J Janssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Huang T, Guo W, Wang Y, Chang L, Shang N, Chen J, Fan R, Zhang L, Gao X, Niu Q, Zhang Q. Involvement of Mitophagy in Aluminum Oxide Nanoparticle-Induced Impairment of Learning and Memory in Mice. Neurotox Res 2021; 39:378-391. [PMID: 32915414 DOI: 10.1007/s12640-020-00283-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Aluminum oxide nanoparticles (nano-aluminum) have been known to be widespread in the environment for decades. Exposure to nano-aluminum may impair learning and memory, but the potential mechanism has not yet been elucidated. In neurons, efficient clearance of damaged mitochondria through mitophagy plays an important role in mitochondrial energy supply, neuronal survival, and health. However, abnormal mitophagy induces accumulation of damaged mitochondria, which induces cellular dysfunction, contributing to the impairment of learning and memory. It is currently unclear whether nano-aluminum interferes with the function of nerve cells through mitophagy, leading to learning and memory disorders. Institute of Cancer Research (ICR) female mice were randomly divided into four groups, and treated with normal saline (control) and 50 nm nano-aluminum at concentrations of 25, 50, and 75 mg/kg for 30 days. Our results showed that exposure to nano-aluminum impaired the spatial learning and memory of mice. Superoxide dismutase levels decreased, whereas the levels of malondialdehyde increased. Moreover, there were significant pathological changes in the ultra-structure and function of mitochondria. Finally, expression of autophagy-related proteins LC3-II and Beclin-1 was upregulated and p62 expression decreased, but the expression of apoptotic and necrosis-related proteins had no significant difference among groups. Our results suggest that learning and memory impairment induced by nano-aluminum could be related to mitophagy.
Collapse
Affiliation(s)
- Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Weiwei Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lijun Chang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Shang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Rong Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaocheng Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China.
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
24
|
Zhu HL, Shi XT, Xu XF, Xiong YW, Yi SJ, Zhou GX, Liu WB, Huang MM, Gao L, Zhang C, Zhao LL, Xu DX, Wang H. Environmental cadmium exposure induces fetal growth restriction via triggering PERK-regulated mitophagy in placental trophoblasts. ENVIRONMENT INTERNATIONAL 2021; 147:106319. [PMID: 33348103 DOI: 10.1016/j.envint.2020.106319] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd), an environmental toxicant, is positively associated with fetal growth restriction (FGR). However, the mechanism by which gestational exposure to Cd induces FGR remains unclear. This study designed in vitro and in vivo experiments to explore the role of placental mitophagy in Cd-impaired fetal growth. Based on our case-control study, we also investigated the association of placental mitophagy with reduced progesterone (P4) level and all-cause FGR. We firstly found environmental Cd exposure lowered the P4 content in maternal sera, placentae and amnioticfluids of mice. The level of three mitochondrial P4 synthases, including StAR, CYP11A1 and 3β-HSD, was also reduced in Cd-treated placentae. Furthermore, Cd triggered mitophagy, as determined by the degradation of two mitochondrial proteins HSP60 and COX IV, and the accumulation of co-localizations of TOM20 with LC3B or Parkin in placental trophoblasts. Correspondingly, Cd elevated mitochondrial Parkin level in placental trophoblasts. Mdivi-1, a mitophagy inhibitor, obviously attenuated Cd-induced reduction of placental P4 and FGR in mice. Moreover, mdivi-1 and Parkin siRNA (siR) markedly reversed Cd-caused P4 synthesis inhibition in human placental trophoblasts. Interestedly, the PERK/ATF4 signaling was activated in Cd-stimulated placental trophoblasts. PERK siR inhibited mitochondrial proteins degradation in Cd-stimulated placental trophoblasts. In particularly, mitophagy activation and P4 synthesis suppression occurred in small-for-gestational-age placentae based on our case-control study. Environmental Cd exposure induced FGR via activating PERK-regulated mitophagy and inhibiting P4 synthesis in placentaltrophoblasts. Furthermore, placental mitophagy was related to the reduced progesterone level and all-cause fetal growth restriction based on our case-control study. As above, placental mitophagy maybe the common mechanism of environmental toxicants-impaired fetal growth.
Collapse
Affiliation(s)
- Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xiao-Feng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Miao-Miao Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, China; NHC Key Laboratory of study on abnormal gametes and reproductive tract, Anhui, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
25
|
Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol 2021; 40:101854. [PMID: 33454563 PMCID: PMC7811044 DOI: 10.1016/j.redox.2021.101854] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/07/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Gestational exposure to environmental stress induces fetal growth restriction (FGR), and thereby increasing the risk of infant death and chronic noncommunicable diseases in adults. However, the mechanism by which environmental stress induces FGR remains unclear. Based on case-control study, we found that the reduced level of melatonin (MT), a major secretory product from the pineal gland, was observed in placentae of FGR. This work was to investigate the protective effect of MT on environmental stress-caused FGR and its mechanisms. We used cadmium (Cd) as an environmental stressor to stimulate pregnant mice and thereby establishing a FGR model. The data showed that maternal Cd exposure lowered the P4 concentration in maternal sera, placentae and amniotic fluid, and caused FGR. Correspondingly, the expression of CYP11A1, a critical P4 synthase, was markedly downregulated in Cd-treated placentae. Simultaneously, Cd triggered BNIP3-dependent mitophagy in placental trophoblasts, as determined by the degradation of mitochondrial proteins, including HSP60 and COX IV, and the accumulation of puncta representing co-localization of TOM20 with LC3B or BNIP3 with LC3B. Based on our case-control study, we also found that activated BNIP3-dependent mitophagy and P4 synthesis inhibition occurred in SGA placentae. Most importantly, BNIP3 siRNA reversed Cd-induced P4 synthesis suppression in human placental trophoblasts. It is noteworthy that MT alleviated Cd-caused P4 synthesis suppression and FGR via antagonizing BNIP3-dependent mitophagy in placental trophoblasts. Further results confirmed that MT attenuated Cd-triggered BNIP3-dependent mitophagy via blocking GCN2/ATF4 signaling. Amusingly, Cd triggered oxidative stress and then activating GCN2/ATF4 signaling in placental trophoblasts. As expected, MT obviously suppressed Cd-caused reactive oxygen species (ROS) release. In the present study, we propose a neoteric mechanism by which MT protects against environmental stress-impaired P4 synthesis and fetal growth via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. As above, MT is a potential therapeutic agent antagonizing environmental stress-induced developmental toxicity. Melatonin protects against Cd-induced fetal growth restriction. Melatonin attenuates Cd-induced placental P4 synthesis inhibition by mitophagy. Melatonin suppresses Cd-triggered placental mitophagy via blocking GCN2/ATF4. Melatonin blocks Cd-activated placental GCN2/ATF4 signaling via repressing ROS. Activated mitophagy and reduced P4 synthesis occur in SGA placentae.
Collapse
|
26
|
Yuan H, Zheng C, Zhu L, Song Z, Dai L, Hu Q, Wang L, Chen Y, Xiong J. Contribution of TFEB-mediated autophagy to tubulointerstitial fibrosis in mice with adenine-induced chronic kidney disease. Biomed Pharmacother 2021; 133:110949. [PMID: 33227703 DOI: 10.1016/j.biopha.2020.110949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/29/2022] Open
Abstract
Autophagy has been implicated in the pathogenesis of chronic kidney disease (CKD). Transcription factor EB (TFEB) is a master controller of autophagy. However, the pathophysiological roles of TFEB in modulating autophagy and tubulointerstitial injury in CKD are unknown. This study aimed to determine whether TFEB-mediated autophagy contributed to the tubulointerstitial injury in mice with CKD. After the mice were treated with an adenine diet (0.2 % adenine) for 8 weeks, the development of CKD was observed to be characterised by increased levels of plasma blood urea nitrogen (BUN), creatinine (Cre), tubulointerstitial inflammation and fibrosis. Immunohistochemical and Western blot analysis further revealed that TFEB and autophagy genes were significantly up-regulated in the kidney of the mice with adenine-induced CKD, and this increase was mostly found in the tubular epithelial cells. Interestingly, a similar expression pattern of TFEB-autophagy genes was observed in tubular epithelial cells in the kidney tissue of patients with immunoglobulin A (IgA) nephropathy. Moreover, a pathogenic role of TFEB in adenine-induced CKD was speculated because the pharmacological activation of TFEB by trehalose failed to protect mice from tubulointerstitial injuries. In the epithelioid clone of normal rat kidney cells (NRK-52E), the activation of TFEB by trehalose increased autophagy induction, cell death and inflammatory cytokine (Interleukin-6, IL-6) release. Collectively, these results suggested that the activation of TFEB-mediated autophagy might cause autophagic cell death and inflammation in tubular epithelial cells, contributing to renal fibrosis in adenine-induced CKD. This study provided novel insights into the pathogenic role of TFEB in CKD associated with a high purine diet.
Collapse
Affiliation(s)
- Huiqi Yuan
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyang Zheng
- Department of Cardiology, the Second Clinical Medical College and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Song
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linfeng Dai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingzong Hu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Festa BP, Berquez M, Nieri D, Luciani A. Endolysosomal Disorders Affecting the Proximal Tubule of the Kidney: New Mechanistic Insights and Therapeutics. Rev Physiol Biochem Pharmacol 2021; 185:233-257. [PMID: 33649992 DOI: 10.1007/112_2020_57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial cells that line the proximal tubule of the kidney rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients. To function effectively and to achieve homeostasis, these specialized cells require the sorting and recycling of a wide array of cell surface proteins within the endolysosomal network, including signaling receptors, nutrient transporters, ion channels, and polarity markers. The dysregulation of the endolysosomal system can lead to a generalized proximal tubule dysfunction, ultimately causing severe metabolic complications and kidney disease.In this chapter, we highlight the biological functions of the genes that code endolysosomal proteins from the perspective of understanding - and potentially reversing - the pathophysiology of endolysosomal disorders affecting the proximal tubule of the kidney. These insights might ultimately lead to potential treatments for currently intractable diseases and transform our ability to regulate kidney homeostasis and health.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Daniela Nieri
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Li Z, Jiang T, Lu Q, Xu K, He J, Xie L, Chen Z, Zheng Z, Ye L, Xu K, Zhang H, Hu A. Berberine attenuated the cytotoxicity induced by t-BHP via inhibiting oxidative stress and mitochondria dysfunction in PC-12 cells. Cell Mol Neurobiol 2020; 40:587-602. [PMID: 31828466 DOI: 10.1007/s10571-019-00756-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases all share several common features such as involvement of oxidative damage and mitochondrial dysfunction in pathogenesis. Oxidative stress induced by overproduction of mitochondrial reactive oxygen species (ROS) or impairment of the antioxidant deficiency results in mitochondrial dysfunction and initiation of the cell death cascade. Berberine (BBR), a traditional Chinese medicine, has been reported to exert anti-oxidative stress and anti-apoptosis effect in CNS diseases. However, the mechanism of BBR on regulating mitophagy and protecting mitochondrial function under oxidative stress remains unclear. In present study, we evaluated the beneficial effects of BBR on the tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity. Furthermore, we explored the protective role of BBR in mitochondrial function and mitophagy under oxidative stress in PC-12 cells. Our results demonstrated that BBR effectively inhibited t-BHP-induced apoptosis which is associated with the decreased leakage of lactate dehydrogenase (LDH) and ROS overproduction. Moreover, BBR significantly suppressed cytochrome c expression, upregulated the ratio of Bcl-2/Bax, and ameliorated mitochondrial dysfunction by optimizing mitochondria membrane potential (ΔΨm) status and ATP production. In addition, BBR reduced the expression of autophagy-specific marker LC3, SQTM1/p62, and maintained lysosome normal function which involved the restoration of upstream signaling pathway AKT and mTOR phosphorylation level. Collectively, these findings suggested that BBR protects PC-12 cells from oxidative injury through inhibiting ROS level, mitochondria dysfunction, and mitophagy via PI3K/AKT/mTOR signaling pathways, which suggest a potential therapeutic strategy for oxidative stress and neurotoxic damages.
Collapse
Affiliation(s)
- Zhengmao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jianping He
- Department of Pharmacy, Shaoxing No. 2 Hospital, Shaoxing, Zhejiang, China
| | - Lei Xie
- Department of Orthopaedics, Shaoxing No. 2 Hospital, Shaoxing, Zhejiang, China
| | - Zaifeng Chen
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical Uinversity, Ninbo, Zhejiang, China
| | - Zhilong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kebin Xu
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Aiping Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
30
|
Jin M, Wang Y, Wang Y, Li Y, Wang G, Liu X, Xue Y, Liu Z, Li C. Protective Effects Oncorneal Endothelium During Intracameral Irrigation Using N-(2)-l-alanyl-l-Glutamine. Front Pharmacol 2020; 11:369. [PMID: 32292346 PMCID: PMC7118711 DOI: 10.3389/fphar.2020.00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Corneal endothelial disease is a global sight-threatening disease, and corneal transplantation using donor corneas remains the sole therapeutic option. A previous work demonstrated that N (2)-alanyl-glutamine (Ala-Gln) protected against apoptosis and cellular stress, and maintained intestinal tissue integrity. In this pursuit, the present study aimed to examine the effect of Ala-Gln in the protection of the corneal endothelium and expand its range of potential clinical applications. Mice in the control group were intracamerally irrigated with Ringers lactate injection, whereas those in the experimental group were irrigated with Ringers lactate injection containing Ala-Gln. The mean intraocular pressure increased to 44 ± 3.5 mm Hg during intracameral irrigation (normal range 10.2 ± 0.4 mmHg). In vivo confocal microscopy results showed that the addition of Ala-Gln protected the morphology, structure, and density of the corneal endothelial cells. Optical Coherence Tomography (OCT) measurements showed that corneal thickness was not significantly different between the two groups, because of the immediate corneal edema after irrigation, but the addition of Ala-Gln obviously promoted the recovery of the corneal edema. Scanning electron microscopy indicated that the corneal endothelial cells were severely ruptured and exfoliated in the Ringer’s group accompanied with cellular edema, when compared with the Ala-Gln group. The intracameral irrigation using Ala-Gln protected the structure and expression of cytoskeleton and Na-K-ATPase, which exhibited a regular distribution and significantly increased expression in comparison to Ringer’s group. Furthermore, Ala-Gln maintained the mitochondrial morphology and increased the activity of mitochondria. Moreover, transmission electron microscopy showed that intracameral irrigation of Ala-Gln reversed the ultrastructural changes induced by the acute ocular hypertension in mice. Our study demonstrates that the intracameral irrigation of Ala-Gln effectively maintained the corneal endothelial pump function and barrier function by protecting the mitochondrial function and preventing the rearrangement of cytoskeleton in acute ocular hypertension in mice.
Collapse
Affiliation(s)
- Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixin Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yunpeng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuezhi Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| |
Collapse
|
31
|
Hollywood JA, Przepiorski A, D'Souza RF, Sreebhavan S, Wolvetang EJ, Harrison PT, Davidson AJ, Holm TM. Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis. J Am Soc Nephrol 2020; 31:962-982. [PMID: 32198276 DOI: 10.1681/asn.2019070712] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations in CTNS-a gene encoding the cystine transporter cystinosin-cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. METHODS To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis-including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis-and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. RESULTS Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. CONCLUSIONS These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.
Collapse
Affiliation(s)
- Jennifer A Hollywood
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania
| | - Randall F D'Souza
- Discipline of Nutrition, The University of Auckland, Auckland, New Zealand
| | - Sreevalsan Sreebhavan
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick T Harrison
- Department of Physiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Teresa M Holm
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Liu K, Zhan Z, Gao W, Feng J, Xie X. Cyclosporine attenuates Paraquat-induced mitophagy and pulmonary fibrosis. Immunopharmacol Immunotoxicol 2020; 42:138-146. [PMID: 32116062 DOI: 10.1080/08923973.2020.1729176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives: Paraquat (PQ) poisoning can induce mitophagy and pulmonary fibrosis. Cyclosporine A (CsA) is an inhibitor of mitophagy. This study aimed at investigating whether CsA could inhibit PQ-induced mitophagy and pulmonary fibrosis in rats.Materials and Methods: Male Sprague-Dawley (SD) rats were treated with vehicle saline (control), 50 mg/kg PQ by gavage alone, or together with different doses of CsA. At 14 days post-induction, the levels of pulmonary fibrosis and PTEN-induced putative kinase 1 (PINK1) and Parkin expression in individual rats and mitochondrial membrane potential (MMP) in lung cells were measured. Moreover, A549 cells were treated with PQ or PQ + CsA for 24 h and the levels of PINK1, Parkin, fibronectin, collagen I and LC3 I and II expression and MMP were examined. Finally, the impact of PINK1 overexpression on the PQ or PQ + CsA-modulated fibronectin and collagen I expression in A549 cells was tested.Results: PQ exposure significantly increased the levels of hydroxyproline and collagen I expression and collagen fiber accumulation in the lung of rats, which were mitigated by CsA treatment. Furthermore, treatment with CsA significantly improved the PQ-decreased MMP and abrogated PQ-upregulated PINK1 and Parkin expression in the lungs of rats. In addition, CsA treatment decreased the PQ-induced fibrosis and mitophagy and PQ-impaired MMP as well as PQ-upregulated PINK1 and Parkin expression in A549 cells. The later effect of CsA was abrogated by PINK1 overexpression in A549 cells.Conclusions: Therefore, CsA can inhibit the PQ-induced mitophagy and pulmonary fibrosis by attenuating the PINK1/Parkin signaling.
Collapse
Affiliation(s)
- Kaixiang Liu
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China.,Department of Nephrology, the Chengdu Second Affiliated Hospital of Chongqing Medical University, and the Third People's Hospital of Chengdu, Chengdu, China
| | - Zhipeng Zhan
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Wei Gao
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Jie Feng
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| | - Xisheng Xie
- Department of Nephrology, the Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China
| |
Collapse
|
33
|
Yang X, Xue P, Chen H, Yuan M, Kang Y, Duscher D, Machens HG, Chen Z. Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction, mitophagy and apoptosis via miR-142a-5p/MFN1 axis. Theranostics 2020; 10:1415-1432. [PMID: 31938072 PMCID: PMC6956801 DOI: 10.7150/thno.40857] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Peripheral nerve injury is common in clinic, which leads to severe atrophy and dysfunction of the denervated muscles, but the underlying mechanism is not fully understood. Recent studies advanced the causative role of mitochondrial dysfunction in muscle atrophy, while the upstream triggers remained unclear. Methods: In the present study, Atrophy of gastrocnemius and tibialis anterior (TA) were evaluated in mice sciatic nerve transection model. Transmission electron microscopy (TEM) was then used to observe the microstructure of atrophic gastrocnemius and mitochondria. Subsequently, small RNA sequencing, luciferase reporter assay and Electrophoretic Mobility Shift (EMSA) were performed to explore the potential signaling pathway involved in skeletal muscle atrophy. The effects of the corresponding pathway on mitochondrial function, mitophagy, apoptosis and muscle atrophy were further determined in C2C12 cells and denervated gastrocnemius. Results: Gastrocnemius and TA atrophied rapidly after denervation. Obvious decrease of mitochondria number and activation of mitophagy was further observed in atrophic gastrocnemius. Further, miR-142a-5p/ mitofusin-1 (MFN1) axis was confirmed to be activated in denervated gastrocnemius, which disrupted the tubular mitochondrial network, and induced mitochondrial dysfunction, mitophagy and apoptosis. Furthermore, the atrophy of gastrocnemius induced by denervation was relieved through targeting miR-142a-5p/MFN1 axis. Conclusions: Collectively, our data revealed that miR-142a-5p was able to function as an important regulator of denervation-induced skeletal muscle atrophy by inducing mitochondrial dysfunction, mitophagy, and apoptosis via targeting MFN1. Our findings provide new insights into the mechanism of skeletal muscle atrophy following denervation and propose a viable target for therapeutic intervention in individuals suffering from muscle atrophy after peripheral nerve injury.
Collapse
|
34
|
Abstract
Autophagy is an important biology process, central to the maintenance of biology process in both physiological and pathological situations. It is regarded as a “double-edged sword”—exerting both protective and/or detrimental effects. These two-way effects are observed in immune cells as well as renal resident cells, including podocytes, mesangial cells, tubular epithelial cells, and endothelial cells of the glomerular capillaries. Mounting evidence suggests that autophagy is implicated in the pathological process of various immune-related renal diseases (IRRDs) as well as the kidney that underwent transplantation. Here, we provide an overview of the pathological role of autophagy in IRRDs, including lupus nephritis, IgA nephropathy, membrane nephropathy, ANCA-associated nephritis, and diabetic nephropathy. The understanding of the pathogenesis and regulatory mechanisms of autophagy in these renal diseases may lead to the identification of new diagnostic targets and refined therapeutic modulation.
Collapse
|
35
|
Goodman S, Naphade S, Khan M, Sharma J, Cherqui S. Macrophage polarization impacts tunneling nanotube formation and intercellular organelle trafficking. Sci Rep 2019; 9:14529. [PMID: 31601865 PMCID: PMC6787037 DOI: 10.1038/s41598-019-50971-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023] Open
Abstract
Tunneling nanotubes (TNTs) are cellular extensions enabling cytosol-to-cytosol intercellular interaction between numerous cell types including macrophages. Previous studies of hematopoietic stem and progenitor cell (HSPC) transplantation for the lysosomal storage disorder cystinosis have shown that HSPC-derived macrophages form TNTs to deliver cystinosin-bearing lysosomes to cystinotic cells, leading to tissue preservation. Here, we explored if macrophage polarization to either proinflammatory M1-like M(LPS/IFNγ) or anti-inflammatory M2-like M(IL-4/IL-10) affected TNT-like protrusion formation, intercellular transport and, ultimately, the efficacy of cystinosis prevention. We designed new automated image processing algorithms used to demonstrate that LPS/IFNγ polarization decreased bone marrow-derived macrophages (BMDMs) formation of protrusions, some of which displayed characteristics of TNTs, including cytoskeletal structure, 3D morphology and size. In contrast, co-culture of macrophages with cystinotic fibroblasts yielded more frequent and larger protrusions, as well as increased lysosomal and mitochondrial intercellular trafficking to the diseased fibroblasts. Unexpectedly, we observed normal protrusion formation and therapeutic efficacy following disruption of anti-inflammatory IL-4/IL-10 polarization in vivo by transplantation of HSPCs isolated from the Rac2-/- mouse model. Altogether, we developed unbiased image quantification systems that probe mechanistic aspects of TNT formation and function in vitro, while HSPC transplantation into cystinotic mice provides a complex in vivo disease model. While the differences between polarization cell culture and mouse models exemplify the oversimplicity of in vitro cytokine treatment, they simultaneously demonstrate the utility of our co-culture model which recapitulates the in vivo phenomenon of diseased cystinotic cells stimulating thicker TNT formation and intercellular trafficking from macrophages. Ultimately, we can use both approaches to expand the utility of TNT-like protrusions as a delivery system for regenerative medicine.
Collapse
Affiliation(s)
- Spencer Goodman
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Swati Naphade
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Meisha Khan
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Jay Sharma
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
36
|
Janssens V, Gaide Chevronnay HP, Marie S, Vincent MF, Van Der Smissen P, Nevo N, Vainio S, Nielsen R, Christensen EI, Jouret F, Antignac C, Pierreux CE, Courtoy PJ. Protection of Cystinotic Mice by Kidney-Specific Megalin Ablation Supports an Endocytosis-Based Mechanism for Nephropathic Cystinosis Progression. J Am Soc Nephrol 2019; 30:2177-2190. [PMID: 31548351 DOI: 10.1681/asn.2019040371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deletions or inactivating mutations of the cystinosin gene CTNS lead to cystine accumulation and crystals at acidic pH in patients with nephropathic cystinosis, a rare lysosomal storage disease and the main cause of hereditary renal Fanconi syndrome. Early use of oral cysteamine to prevent cystine accumulation slows progression of nephropathic cystinosis but it is a demanding treatment and not a cure. The source of cystine accumulating in kidney proximal tubular cells and cystine's role in disease progression are unknown. METHODS To investigate whether receptor-mediated endocytosis by the megalin/LRP2 pathway of ultrafiltrated, disulfide-rich plasma proteins could be a source of cystine in proximal tubular cells, we used a mouse model of cystinosis in which conditional excision of floxed megalin/LRP2 alleles in proximal tubular cells of cystinotic mice was achieved by a Cre-LoxP strategy using Wnt4-CRE. We evaluated mice aged 6-9 months for kidney cystine levels and crystals; histopathology, with emphasis on swan-neck lesions and proximal-tubular-cell apoptosis and proliferation (turnover); and proximal-tubular-cell expression of the major apical transporters sodium-phosphate cotransporter 2A (NaPi-IIa) and sodium-glucose cotransporter-2 (SGLT-2). RESULTS Wnt4-CRE-driven megalin/LRP2 ablation in cystinotic mice efficiently blocked kidney cystine accumulation, thereby preventing lysosomal deformations and crystal deposition in proximal tubular cells. Swan-neck lesions were largely prevented and proximal-tubular-cell turnover was normalized. Apical expression of the two cotransporters was also preserved. CONCLUSIONS These observations support a key role of the megalin/LRP2 pathway in the progression of nephropathic cystinosis and provide a proof of concept for the pathway as a therapeutic target.
Collapse
Affiliation(s)
- Virginie Janssens
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | | | - Sandrine Marie
- Biochemical Genetics, Academic Hospital Saint-Luc, Brussels, Belgium
| | | | - Patrick Van Der Smissen
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Nathalie Nevo
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Laboratory of Developmental Biology, Oulu Center for Cell-Matrix Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and
| | | | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Christophe E Pierreux
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium;
| | - Pierre J Courtoy
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Hsu YH, Chuang HC, Lee YH, Lin YF, Chen YJ, Hsiao TC, Wu MY, Chiu HW. Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo. Free Radic Biol Med 2019; 135:235-244. [PMID: 30878646 DOI: 10.1016/j.freeradbiomed.2019.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
Traffic emission is responsible for most small-sized particulate matter (PM) air pollution in urban areas. Several recent studies have indicated that traffic-related PM may aggravate kidney disease. Furthermore, exposure to particulate air pollution may be related to the risk of chronic kidney disease (CKD). However, the underlying molecular mechanisms have not been adequately addressed. In the present study, we studied the mechanisms of renal damage that might be associated with exposure to PM. In a real world of whole-body exposure to traffic-related PM model for 3-6 months, PM in urban ambient air can affect kidney function and induce autophagy, endoplasmic reticulum (ER) stress and apoptosis in kidney tissues. Exposure to traffic-related diesel particulate matter (DPM) led to a reduction in cell viability in human kidney tubular epithelial cells HK-2. DPM increased mitochondrial reactive oxygen species (ROS) and decreased the mitochondrial membrane potential. Furthermore, DPM induced ER stress and activated the unfolded protein response (UPR) pathway. Eventually, DPM exposure induced caspase pathways and triggered apoptosis. In addition, DPM induced autophagy through the inhibition of the Akt/mTOR pathway. Autophagy inhibition resulted in significantly increased cytotoxicity and apoptosis. These findings suggest that air pollution in urban areas may cause nephrotoxicity and autophagy as a protective role in PM-induced cytotoxicity.
Collapse
Affiliation(s)
- Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene &Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jie Chen
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate of Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
38
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
39
|
Shimizu Y, Yanobu-Takanashi R, Nakano K, Hamase K, Shimizu T, Okamura T. A deletion in the Ctns gene causes renal tubular dysfunction and cystine accumulation in LEA/Tohm rats. Mamm Genome 2018; 30:23-33. [PMID: 30591971 PMCID: PMC6397714 DOI: 10.1007/s00335-018-9790-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 11/21/2022]
Abstract
The Long-Evans Agouti (LEA/Tohm) rat has recently been established as a new rat model of type 2 diabetes. The onset of diabetes mellitus was observed only in male LEA/Tohm rats; however, urinary glucose appeared before the onset of diabetes. To clarify the genetic basis of urinary glucose, we performed genetic linkage analysis using (BN × LEA) F2 intercross progeny. A recessively acting locus responsible for urinary glucose excretion (ugl) was mapped to a 7.9 Mb region of chromosome 10, which contains the cystinosin (Ctns) gene. The Ctns gene encodes the cystine transporter, which transports cystine out of the lysosome and is responsible for nephropathic cystinosis in humans. Sequence analysis identified a 13-bp deletion in the Ctns gene, leading to a truncated and loss-of-function protein, which cause cystine accumulation in various tissues. We also developed a novel congenic rat strain harboring the Ctnsugl mutation on the F344 genetic background. Phenotypic analysis of F344-Ctnsugl rats indicated that the incidence of urinary glucose was 100% in both males and females at around 40 weeks of age, and marked cystine accumulation was observed in the tissues, as well as remarkable renal lesions and cystine crystals in the lysosomes of the renal cortex. Furthermore, treatment with cysteamine depleted the cystine contents in F344-Ctnsugl rat embryonic fibroblasts. These results indicated that the F344-Ctnsugl rat provides a novel rat model of cystinosis, which allows not only a better understanding of the pathogenesis and pathophysiology of cystinosis but will also contribute to the development of new therapies.
Collapse
Affiliation(s)
- Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rieko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.,Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan. .,Section of Animal Models, Department of Infections Diseases, Research Institute, National Center for Global Health and Medicine (NCGM), 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
40
|
Sumayao R, Newsholme P, McMorrow T. The Role of Cystinosin in the Intermediary Thiol Metabolism and Redox Homeostasis in Kidney Proximal Tubular Cells. Antioxidants (Basel) 2018; 7:antiox7120179. [PMID: 30513914 PMCID: PMC6315507 DOI: 10.3390/antiox7120179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 01/26/2023] Open
Abstract
Cystinosin is a lysosomal transmembrane protein which facilitates transport of the disulphide amino acid cystine (CySS) from the lysosomes of the cell. This protein is encoded by the CTNS gene which is defective in the lysosomal storage disorder, cystinosis. Because of the apparent involvement of cystinosin in the intermediary thiol metabolism, its discovery has fuelled investigations into its role in modulating cellular redox homeostasis. The kidney proximal tubular cells (PTCs) have become the focus of various studies on cystinosin since the protein is highly expressed in these cells and kidney proximal tubular transport dysfunction is the foremost clinical manifestation of cystinosis. The lysosomal CySS pool is a major source of cytosolic cysteine (Cys), the limiting amino acid for the synthesis of an important antioxidant glutathione (GSH) via the γ-glutamyl cycle. Therefore, loss of cystinosin function is presumed to lead to cytosolic deficit of Cys which may impair GSH synthesis. However, studies using in vitro models lacking cystinosin yielded inconsistent results and failed to establish the mechanistic role of cystinosin in modulating GSH synthesis and redox homeostasis. Because of the complexity of the metabolic micro- and macro-environment in vivo, using in vitro models alone may not be able to capture the complete sequence of biochemical and physiological events that occur as a consequence of loss of cystinosin function. The coexistence of pathways for the overall handling and disposition of GSH, the modulation of CTNS gene by intracellular redox status and the existence of a non-canonical isoform of cystinosin may constitute possible rescue mechanisms in vivo to remediate redox perturbations in renal PTCs. Importantly, the mitochondria seem to play a critical role in orchestrating redox imbalances initiated by cystinosin dysfunction. Non-invasive techniques such as in vivo magnetic resonance imaging with the aid of systems biology approaches may provide invaluable mechanistic insights into the role of cystinosin in the essential intermediary thiol metabolism and in the overall regulation cellular redox homeostasis.
Collapse
Affiliation(s)
- Rodolfo Sumayao
- Chemistry Department, De La Salle University, Manila 1004, Philippines.
| | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences and Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6845, Australia.
| | - Tara McMorrow
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
41
|
Bellomo F, Signorile A, Tamma G, Ranieri M, Emma F, De Rasmo D. Impact of atypical mitochondrial cyclic-AMP level in nephropathic cystinosis. Cell Mol Life Sci 2018; 75:3411-3422. [PMID: 29549422 PMCID: PMC11105431 DOI: 10.1007/s00018-018-2800-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Nephropathic cystinosis (NC) is a rare disease caused by mutations in the CTNS gene encoding for cystinosin, a lysosomal transmembrane cystine/H+ symporter, which promotes the efflux of cystine from lysosomes to cytosol. NC is the most frequent cause of Fanconi syndrome (FS) in young children, the molecular basis of which is not well established. Proximal tubular cells have very high metabolic rate due to the active transport of many solutes. Not surprisingly, mitochondrial disorders are often characterized by FS. A similar mechanism may also apply to NC. Because cAMP has regulatory properties on mitochondrial function, we have analyzed cAMP levels and mitochondrial targets in CTNS-/- conditionally immortalized proximal tubular epithelial cells (ciPTEC) carrying the classical homozygous 57-kb deletion (delCTNS-/-) or with compound heterozygous loss-of-function mutations (mutCTNS-/-). Compared to wild-type cells, cystinotic cells had significantly lower mitochondrial cAMP levels (delCTNS-/- ciPTEC by 56% ± 10.5, P < 0.0001; mutCTNS-/- by 26% ± 4.3, P < 0.001), complex I and V activities, mitochondrial membrane potential, and SIRT3 protein levels, which were associated with increased mitochondrial fragmentation. Reduction of complex I and V activities was associated with lower expression of part of their subunits. Treatment with the non-hydrolysable cAMP analog 8-Br-cAMP restored mitochondrial potential and corrected mitochondria morphology. Treatment with cysteamine, which reduces the intra-lysosomal cystine, was able to restore mitochondrial cAMP levels, as well as most other abnormal mitochondrial findings. These observations were validated in CTNS-silenced HK-2 cells, indicating a pivotal role of mitochondrial cAMP in the proximal tubular dysfunction observed in NC.
Collapse
Affiliation(s)
- Francesco Bellomo
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children's Hospital, Viale di S. Paolo, 15, 00149, Rome, Italy.
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Policlinico, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Grazia Tamma
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Marianna Ranieri
- Department of Bioscience, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Emma
- Laboratory of Nephrology, Department of Rare Diseases, Bambino Gesù Children's Hospital, Viale di S. Paolo, 15, 00149, Rome, Italy
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, Rome, Italy
| | - Domenico De Rasmo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Policlinico, Piazza G. Cesare, 11, 70124, Bari, Italy.
- Institute of Biomembrane, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Bari, Italy.
| |
Collapse
|
42
|
Sumayao R, Newsholme P, McMorrow T. Inducible nitric oxide synthase inhibitor 1400W increases Na + ,K + -ATPase levels and activity and ameliorates mitochondrial dysfunction in Ctns null kidney proximal tubular epithelial cells. Clin Exp Pharmacol Physiol 2018; 45:1149-1160. [PMID: 29924417 DOI: 10.1111/1440-1681.12998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO) has been shown to play an important role in renal physiology and pathophysiology partly through its influence on various transport systems in the kidney proximal tubule. The role of NO in kidney dysfunction associated with lysosomal storage disorder, cystinosis, is largely unknown. In the present study, the effects of inducible nitric oxide synthase (iNOS)-specific inhibitor, 1400W, on Na+ ,K+ -ATPase activity and expression, mitochondrial integrity and function, nutrient metabolism, and apoptosis were investigated in Ctns null proximal tubular epithelial cells (PTECs). Ctns null PTECs exhibited an increase in iNOS expression, augmented NO and nitrite/nitrate production, and reduced Na+ ,K+ -ATPase expression and activity. In addition, these cells displayed depolarized mitochondria, reduced adenosine triphosphate content, altered nutrient metabolism, and elevated apoptosis. Treatment of Ctns null PTECs with 1400W abolished these effects which culminated in the mitigation of apoptosis in these cells. These findings indicate that uncontrolled NO production may constitute the upstream event that leads to the molecular and biochemical alterations observed in Ctns null PTECs and may explain, at least in part, the generalized proximal tubular dysfunction associated with cystinosis. Further studies are needed to realize the potential benefits of anti-nitrosative therapies in improving renal function and/or attenuating renal injury in cystinosis.
Collapse
Affiliation(s)
- Rodolfo Sumayao
- Chemistry Department, De La Salle University, Manila, Philippines
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, Western Australia, Australia
| | - Tara McMorrow
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Wang JL, Chen CW, Tsai MR, Liu SF, Hung TJ, Yu-Ju-Hung, Chang WT, Shi MD, Hsieh PF, Yang YL. Antifibrotic role of PGC-1α-siRNA against TGF-β1-induced renal interstitial fibrosis. Exp Cell Res 2018; 370:160-167. [PMID: 29913155 DOI: 10.1016/j.yexcr.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activated receptor coactivator-1 alpha (PGC-1α) is a transcriptional coactivator that regulates energy metabolism and mitochondrial biogenesis. Recently, mitochondrial dysfunction has been indicated as an established risk factor for the development of renal fibrosis. However, whether PGC-1α is involved in the pathogenesis of renal fibrosis is unknown. In this study, we treated NRK-49F (normal rat kidney fibroblast) cells with transforming growth factor-beta 1 (TGF-β1) for 24 h to establish an in vitro fibrosis model. TGF-β1 induced the upregulation of type I collagen, fibronectin, TGF-β receptor I (TGFβ-RI), TGFβ-RII, Smad4, and pSmad2/3, as well as PGC-1α. NRK-49F cells transfected with pcDNA-PGC-1α showed significantly increased expression of fibronectin and type I collagen, as revealed by western blot assay. Interestingly, transfection with PGC-1α-siRNA caused a stark reversal of TGF-β1-induced cellular fibrosis, with concomitant suppression of fibronectin and type I collagen, as revealed by western blot and immunofluorescence assays. Moreover, SB431542 (TGFβ-RI), LY294002 (PI3K/Akt), and SB203580 (p38 MAPK), inhibitors of TGF-β-associated pathways, markedly suppressed TGF-β1-induced PGC-1α upregulation. These results implicate a role of PGC-1α in renal interstitial fibrosis mediated via the TGFβ-RI, PI3K/Akt, and p38 MAPK pathways. Our findings that PGC-1α-siRNA downregulates fibronectin and type I collagen suggest that it can be used as a novel molecular treatment for renal fibrosis.
Collapse
Affiliation(s)
- Jue-Long Wang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Tainan, Taiwan, ROC; Department of Nursing, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC.
| | - Chin-Wang Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Tainan, Taiwan, ROC
| | - Mu-Rou Tsai
- Graduate Institute of Biomedical Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Shu-Fen Liu
- Division of Hepato-Biliary-Pancreatic Medicine, Kaoshiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Tsung-Jeu Hung
- Department of Early Childhood Caring and Education, Chung Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Yu-Ju-Hung
- Graduate Institute of Biomedical Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC; Department of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Wen-Teng Chang
- Graduate Institute of Biomedical Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC
| | - Ming-Der Shi
- Department of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC; Department of Medical Technology, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan, ROC
| | - Pei-Fang Hsieh
- Department of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC; Graduate Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Yu-Lin Yang
- Graduate Institute of Biomedical Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC; Department of Medical Laboratory Science and Biotechnology, Chung-Hwa University of Medical Technology, Tainan, Taiwan, ROC.
| |
Collapse
|
44
|
Cao W, Zhang J, Wang G, Lu J, Wang T, Chen X. Reducing-Autophagy Derived Mitochondrial Dysfunction during Resveratrol Promotes Fibroblast-Like Synovial Cell Apoptosis. Anat Rec (Hoboken) 2018; 301:1179-1188. [PMID: 29461680 DOI: 10.1002/ar.23798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
In rheumatoid arthritis patients, the fibroblast-like synovial cells (FLS) growth is not controlled normally, but is similar to the tumor cells proliferation in histology. Our previous studies have shown that resveratrol inhibits the proliferation of FLS and promotes FLS apoptosis. However, the molecular mechanisms involved in resveratrol-induced FLS apoptosis have not been determined yet. Here, we showed that the FLS cell viability (following pretreatment with 5 µM H2 O2 for 24 hr) exhibited better proliferation performance than at other concentrations via the CCK-8 assay. The cell apoptotic rate increased with the increasing concentration of resveratrol (0, 40, 80, 160, 320 μM), as detected by TdT-mediated dUTP nick-end labeling (TUNEL) staining and western blotting. Furthermore, the expression level of autophagy-related proteins (LC3A/B, ATG-5) decreased with the increased concentration of resveratrol, as determined by immunofluorescence and western blot analysis. We also showed that resveratrol induced FLS mitochondrial morphology change. Moreover, mitochondrial function detection showed that the mitochondrial membrane potential was lost with the increased concentration of resveratrol as examined by the JC-1 assay. The production of ATP in cells was positively and negatively correlated with the resveratrol concentration. Simultaneously, the intracellular calcium release and calcium influx decreased gradually with the increase in resveratrol concentration. Therefore, we proposed that resveratrol can reduce the level of autophagy in FLS. The decrease in the autophagy level can lead to the accumulation of reactive oxygen species, which may result in mitochondrial dysfunction and promotion of FLS apoptosis. Anat Rec, 301:1179-1188, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Cao
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Junqiang Zhang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Gaoyuan Wang
- Department of Orthopaedic, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Jinsen Lu
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Taorong Wang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
45
|
Slow progression of renal failure in a child with infantile cystinosis. CEN Case Rep 2018; 7:153-157. [PMID: 29446030 DOI: 10.1007/s13730-018-0316-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/07/2018] [Indexed: 10/18/2022] Open
Abstract
Cystinosis is a rare autosomal recessive lysosomal transport disorder, characterized by the accumulation of the aminoacid cystine and progressive dysfunction of several organs. Kidneys are severely affected, and the most frequent form, infantile nephropathic cystinosis, presents with growth failure in infancy, renal Fanconi syndrome and end-stage renal disease by the first decade of life. We report of a girl with infantile nephropathic cystinosis that has reached adolescence without the need of renal replacement therapy and without extrarenal manifestations despite her delayed diagnosis and treatment initiation. The girl with this intermediate phenotype was found to have compound heterozygosity of one known (1015G > A) and one novel (587_588insA) mutation in CTNS gene. Our case points to the wide clinical presentation of infantile nephropathic cystinosis and suggest that long-term outcome is not always ominous as generally thought.
Collapse
|
46
|
Zhitomirsky B, Farber H, Assaraf YG. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance. J Cell Mol Med 2018; 22:2131-2141. [PMID: 29377455 PMCID: PMC5867146 DOI: 10.1111/jcmm.13485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023] Open
Abstract
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP‐driven efflux transporter P‐glycoprotein (P‐gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above‐mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P‐gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P‐gp‐overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P‐gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P‐gp transport substrates, and therefore, P‐gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P‐gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P‐gp‐overexpressing cells may facilitate the identification of potent P‐gp transport inhibitors (i.e. chemosensitizers).
Collapse
Affiliation(s)
- Benny Zhitomirsky
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hodaya Farber
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
47
|
Du C, Zhang T, Xiao X, Shi Y, Duan H, Ren Y. Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Biochem J 2017; 474:2733-2747. [PMID: 28694352 DOI: 10.1042/bcj20170272] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/17/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Protease-activated receptor-2 (PAR2), which belongs to a specific class of the G-protein-coupled receptors, is central to several inflammation processes. However, the precise molecular mechanism involved remains undefined. Autophagy has been previously shown to affect inflammation. In the present study, we examine the effect of PAR2 on kidney tubular epithelial autophagy and on autophagy-related inflammation and reveal the underlying mechanism involved. Autophagic activity and levels of autophagic marker LC3 were examined in human kidney tubular epithelial cells with PAR2 knockdown or overexpression. We administered the mammalian target of rapamycin (mTOR) inhibitor (rapamycin) or activator (MHY1485) to investigate the function of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway. We also used transforming growth factor-β1 (TGF-β1)-induced HK-2 cell inflammation models to investigate the role of PAR2-associated autophagy in kidney tubular epithelial inflammation. PAR2 antagonist and rapamycin were administered to mice after unilateral ureteral obstruction to detect the correlations between PAR2, autophagy, and inflammation. Our results show that PAR2 overexpression in HK-2 cells led to a greater reduction in autophagy via the PI3K/Akt/mTOR pathway activation and induces autophagy-related inflammation. Meanwhile, a knockdown of PAR2 via PAR2 RNAi transfection greatly increased autophagy and alleviated autophagy-associated inflammation. In unilateral ureteral obstruction (UUO) kidneys, PAR2 antagonist treatment greatly attenuated renal inflammation and interstitial injury by enhancing autophagy. Moreover, inhibition of mTOR, rapa, markedly increased autophagy and inhibited the UUO-induced inflammation. We conclude that PAR2 induces kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Our results are suggestive that PAR2 inhibition may play a role in the treatment of diseases with increased inflammatory responses in renal systems.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Tao Zhang
- Department of Nephrology, The Third Affiliated Hospital of Hebei Mecial University, Shijiazhuang, China
| | - Xia Xiao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Over the past few decades, cystinosis, a rare lysosomal storage disorder, has evolved into a treatable metabolic disease. The increasing understanding of its pathophysiology has made cystinosis a prototype disease, delivering new insights into several fundamental biochemical and cellular processes. RECENT FINDINGS In this review, we aim to provide an overview of the latest advances in the pathogenetic, clinical, and therapeutic aspects of cystinosis. SUMMARY The development of alternative therapeutic monitoring strategies and new systemic and ocular cysteamine formulations might improve outcome of cystinosis patients in the near future. With the dawn of stem cell based therapy and new emerging gene-editing technologies, novel tools have become available in the search for a cure for cystinosis.
Collapse
|
49
|
Rhein Inhibits Autophagy in Rat Renal Tubular Cells by Regulation of AMPK/mTOR Signaling. Sci Rep 2017; 7:43790. [PMID: 28252052 PMCID: PMC5333140 DOI: 10.1038/srep43790] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
Rhubarb and its bioactive component rhein are frequently used for the treatment of chronic kidney diseases (CKD) in eastern Asia countries. However, the potential therapeutic mechanism remains unclear. Autophagy plays an important role in CKD. However, there were some important related issues that remained unresolved in the role of autophagy in CKD and treatment by rhubarb and rhein. We designed a number of experiments to examine whether rhubarb may reduce renal fibrosis and autophagy in rats with adenine (Ade)-induced renal tubular injury, and whether rhein could affect autophagic pathways in rat renal tubular cells. We found that, autophagic activation accompanied with renal fibrosis in rats with Ade-induced renal tubular injury, and both autophagy and renal fibrosis were attenuated by rhubarb. In addition, we observed that rhein could inhibit autophagy through regulating the key molecules in the AMPK-dependent mTOR signaling pathways, as well as the Erk and p38 MAPKs signaling pathways. These findings may partly explain the therapeutic mechanisms of rhubarb and rhein in treating CKD patients in clinic, and further suggest that targeting autophagy and related signaling pathways may provide new strategies for the treatment of renal fibrosis in CKD.
Collapse
|
50
|
Rega LR, Polishchuk E, Montefusco S, Napolitano G, Tozzi G, Zhang J, Bellomo F, Taranta A, Pastore A, Polishchuk R, Piemonte F, Medina DL, Catz SD, Ballabio A, Emma F. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells. Kidney Int 2017; 89:862-73. [PMID: 26994576 DOI: 10.1016/j.kint.2015.12.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis.
Collapse
Affiliation(s)
- Laura R Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Giulia Tozzi
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Francesco Bellomo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Taranta
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Pastore
- Laboratory of Proteomics and Metabolomics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Fiorella Piemonte
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| |
Collapse
|