1
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
2
|
Badawi A, Jefferson OC, Huuskes BM, Ricardo SD, Kerr PG, Samuel CS, Murthi P. A Novel Approach to Enhance the Regenerative Potential of Circulating Endothelial Progenitor Cells in Patients with End-Stage Kidney Disease. Biomedicines 2022; 10:biomedicines10040883. [PMID: 35453633 PMCID: PMC9029861 DOI: 10.3390/biomedicines10040883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Circulating bone marrow-derived endothelial progenitor cells (EPCs) facilitate vascular repair in several organs including the kidney but are progressively diminished in end-stage kidney disease (ESKD) patients, which correlates with cardiovascular outcomes and related mortality. We thus determined if enhancing the tissue-reparative effects of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) with the vasculogenic effects of recombinant human relaxin (RLX) could promote EPC proliferation and function. CD34+ EPCs were isolated from the blood of healthy and ESKD patients, cultured until late EPCs had formed, then stimulated with BM-MSC-derived condition media (CM; 25%), RLX (1 or 10 ng/mL), or both treatments combined. Whilst RLX alone stimulated EPC proliferation, capillary tube formation and wound healing in vitro, these measures were more rapidly and markedly enhanced by the combined effects of BM-MSC-derived CM and RLX in EPCs derived from both healthy and ESKD patients. These findings have important clinical implications, having identified a novel combination therapy that can restore and enhance EPC number and function in ESKD patients.
Collapse
Affiliation(s)
- Amrilmaen Badawi
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (A.B.); (O.C.J.); (S.D.R.)
| | - Osfred C. Jefferson
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (A.B.); (O.C.J.); (S.D.R.)
| | - Brooke M. Huuskes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Sharon D. Ricardo
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (A.B.); (O.C.J.); (S.D.R.)
| | - Peter G. Kerr
- Department of Nephrology, Monash Medical Centre, Melbourne, VIC 3168, Australia;
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (A.B.); (O.C.J.); (S.D.R.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: (C.S.S.); (P.M.)
| | - Padma Murthi
- Cardiovascular Disease Program, Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (A.B.); (O.C.J.); (S.D.R.)
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: (C.S.S.); (P.M.)
| |
Collapse
|
3
|
Jin Y, Zhang M, Li M, Zhang H, Zhang F, Zhang H, Yin Z, Zhou M, Wan X, Li R, Cao C. Generation of Urine-Derived Induced Pluripotent Stem Cell Line from Patients with Acute Kidney Injury. Cell Reprogram 2021; 23:290-303. [PMID: 34648385 DOI: 10.1089/cell.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Acute kidney injury (AKI) is mainly characterized by rapid decline of renal function. Currently, the strategy of stem cells might be a therapy to treat AKI. The objective of this study was to obtain human urine-derived cells (HUCs) from patients with AKI, followed by establishing induced pluripotent stem (iPS) cell line. We isolated urine cells from patients with AKI and found that the cells could survive long term with epithelioid morphology and maintain a normal karyotype. The cell line had expression of renal-specific markers and renal development-related genes. After induction, the urine cells cotransfecting with TET-ON vectors were converted into iPS cells. The HUC-derived iPS (HUC-iPS) was positive for alkaline phosphatase staining, and had expression of pluripotency markers, consistent with human embryonic fibroblast-derived iPS cell. Notably, HUC-iPS could be induced to undergo directional kidney precursor cells (KPCs) differentiation under defined conditions, and transplantation of KPCs resulted in reducing kidney damage from ischemia-reperfusion injury in mice. Therefore, we successfully established HUC-iPS cell from patients with AKI and provided a novel stem cell resource for cell therapy in AKI.
Collapse
Affiliation(s)
- Yong Jin
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
The Differentiation of Human Induced Pluripotent Stem Cells into Podocytes In Vitro. Methods Mol Biol 2021. [PMID: 33733390 DOI: 10.1007/7651_2021_370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential in the field of regenerative medicine due to their pluripotent properties, where they can give rise to all cell types in the body. Here we describe a detailed 20-day culture and differentiation protocol to generate iPSC-derived podocytes grown as a monolayer. These iPSC-derived podocytes appear arborised by morphology and express podocyte-specific markers. Also described is a detailed immunofluorescence staining protocol to confirm successful differentiation using the podocyte-specific markers, Wilms' tumor protein (WT1) and podocin.
Collapse
|
5
|
Guo H, Deng N, Dou L, Ding H, Criswell T, Atala A, Furdui CM, Zhang Y. 3-D Human Renal Tubular Organoids Generated from Urine-Derived Stem Cells for Nephrotoxicity Screening. ACS Biomater Sci Eng 2020; 6:6701-6709. [PMID: 33320634 PMCID: PMC8118570 DOI: 10.1021/acsbiomaterials.0c01468] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of human cell-based systems to replace the use of rodents or the two-dimensional culture of cells for studying nephrotoxicity is urgently needed. Human urine-derived stem cells were differentiated into renal tubular epithelial cells in three-dimensional (3-D) culture after being induced by a kidney extracellular matrix. Levels of CYP2E1 and KIM-1 in 3-D organoids were significantly increased in response to acetone and cisplatin. This 3-D culture system provides an alternative tool for nephrotoxicity screening and research.
Collapse
Affiliation(s)
- Haibin Guo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States.,Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Nan Deng
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States.,Department of Urology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Lei Dou
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States
| | - Huifen Ding
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
6
|
Shen WC, Chou YH, Huang HP, Sheen JF, Hung SC, Chen HF. Induced pluripotent stem cell-derived endothelial progenitor cells attenuate ischemic acute kidney injury and cardiac dysfunction. Stem Cell Res Ther 2018; 9:344. [PMID: 30526689 PMCID: PMC6288873 DOI: 10.1186/s13287-018-1092-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI), which is associated with high morbidity and mortality. AKI is a serious and costly medical condition. Effective therapy for AKI is an unmet clinical need, and molecular mechanisms underlying the interactions between an injured kidney and distant organs remain unclear. Therefore, novel therapeutic strategies should be developed. Methods We directed the differentiation of human induced pluripotent stem (iPS) cells into endothelial progenitor cells (iEPCs), which were then applied for treating mouse AKI. The mouse model of AKI was induced by I/R injury. Results We discovered that intravenously infused iEPCs were recruited to the injured kidney, expressed the mature endothelial cell marker CD31, and replaced injured endothelial cells. Moreover, infused iEPCs produced abundant proangiogenic proteins, which entered into circulation. In AKI mice, blood urea nitrogen and plasma creatinine levels increased 2 days after I/R injury and reduced after the infusion of iEPCs. Tubular injury, cell apoptosis, and peritubular capillary rarefaction in injured kidneys were attenuated accordingly. In the AKI mice, iEPC therapy also ameliorated apoptosis of cardiomyocytes and cardiac dysfunction, as indicated by echocardiography. The therapy also ameliorated an increase in serum brain natriuretic peptide. Regarding the relevant mechanisms, indoxyl sulfate and interleukin-1β synergistically induced apoptosis of cardiomyocytes. Systemic iEPC therapy downregulated the proapoptotic protein caspase-3 and upregulated the anti-apoptotic protein Bcl-2 in the hearts of the AKI mice, possibly through the reduction of indoxyl sulfate and interleukin-1β. Conclusions Therapy using human iPS cell-derived iEPCs provided a protective effect against ischemic AKI and remote cardiac dysfunction through the repair of endothelial cells and the attenuation of cardiomyocyte apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-018-1092-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Ching Shen
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenn-Feng Sheen
- Department of Biotechnology, National Formosa University, Yun-Lin, Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung, 404, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 105, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan. .,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Morrow S, Gosálvez J, López-Fernández C, Arroyo F, Holt WV, Guille MJ. Effects of freezing and activation on membrane quality and DNA damage in Xenopus tropicalis and Xenopus laevis spermatozoa. Reprod Fertil Dev 2018; 29:1556-1566. [PMID: 27692061 DOI: 10.1071/rd16190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
There is growing concern over the effect of sperm cryopreservation on DNA integrity and the subsequent development of offspring generated from this cryopreserved material. In the present study, membrane integrity and DNA stability of Xenopus laevis and Xenopus tropicalis spermatozoa were evaluated in response to cryopreservation with or without activation, a process that happens upon exposure to water to spermatozoa of some aquatic species. A dye exclusion assay revealed that sperm plasma membrane integrity in both species decreased after freezing, more so for X. laevis than X. tropicalis spermatozoa. The sperm chromatin dispersion (SCD) test showed that for both X. tropicalis and X. laevis, activated frozen spermatozoa produced the highest levels of DNA fragmentation compared with all fresh samples and frozen non-activated samples (P<0.05). Understanding the nature of DNA and membrane damage that occurs in cryopreserved spermatozoa from Xenopus species represents the first step in exploiting these powerful model organisms to understand the developmental consequences of fertilising with cryopreservation-damaged spermatozoa.
Collapse
Affiliation(s)
- S Morrow
- School of Biological Sciences and European Resource Centre, The University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - J Gosálvez
- Department of Biology, Genetics Unit, The Autonomous University of Madrid, 20849 Madrid, Spain
| | - C López-Fernández
- Department of Biology, Genetics Unit, The Autonomous University of Madrid, 20849 Madrid, Spain
| | - F Arroyo
- Department of Biology, Genetics Unit, The Autonomous University of Madrid, 20849 Madrid, Spain
| | - W V Holt
- Academic Department of Reproductive and Developmental Medicine, The University of Sheffield, Sheffield, S10 2SF, UK
| | - M J Guille
- School of Biological Sciences and European Resource Centre, The University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
8
|
Becherucci F, Mazzinghi B, Allinovi M, Angelotti ML, Romagnani P. Regenerating the kidney using human pluripotent stem cells and renal progenitors. Expert Opin Biol Ther 2018; 18:795-806. [PMID: 29939787 DOI: 10.1080/14712598.2018.1492546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic kidney disease is a major health-care problem worldwide and its cost is becoming no longer affordable. Indeed, restoring damaged renal structures or building a new kidney represents an ambitious and ideal alternative to renal replacement therapy. Streams of research have explored the possible application of pluripotent stem cells (SCs) (embryonic SCs and induced pluripotent SCs) in different strategies aimed at regenerate functioning nephrons and at understanding the mechanisms of kidney regeneration. AREAS COVERED In this review, we will focus on the main potential applications of human pluripotent SCs to kidney regeneration, including those leading to rebuilding new kidneys or part of them (organoids, scaffolds, biological microdevices) as well as those aimed at understanding the pathophysiological mechanisms of renal disease and regenerative processes (modeling of kidney disease, genome editing). Moreover, we will discuss the role of endogenous renal progenitors cells in order to understand and promote kidney regeneration, as an attractive alternative to pluripotent SCs. EXPERT OPINION Opportunities and pitfalls of all these strategies will be underlined, finally leading to the conclusion that a deeper knowledge of the biology of pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical application.
Collapse
Affiliation(s)
- Francesca Becherucci
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy
| | - Benedetta Mazzinghi
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy
| | - Marco Allinovi
- b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Maria Lucia Angelotti
- b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Paola Romagnani
- a Nephrology and Dialysis Unit , Meyer Children's University Hospital , Florence , Italy.,b Department of Biomedical Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
9
|
Sánchez-Romero N, Schophuizen CM, Giménez I, Masereeuw R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 2016; 790:36-45. [DOI: 10.1016/j.ejphar.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
|
10
|
Heussner A, Paget T. Evaluation of renal in vitro models used in ochratoxin research. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) induces renal carcinomas in rodents with a specific localisation in the S3 segment of proximal tubules and distinct early severe tissue alterations, which have been observed also in other species. Pronounced species- and sex-specific differences in toxicity occur and similar effects cannot be excluded in humans, however precise mechanism(s) remain elusive until today. In such cases, the use of in vitro models for mechanistic investigations can be very useful; in particular if a non-genotoxic mechanism of cancer formation is assumed which include cytotoxic effects. However, potential genotoxic mechanisms can also be investigated in vitro. A crucial issue of in vitro research is the choice of the appropriate cell model. Apparently, the cellular target of OTA is the renal proximal tubular cell; therefore cells from this tissue area are the most reasonable model. Furthermore, cells from affected species should be used and can be compared to cells of human origin. Another important parameter is whether to use primary cultures or to choose a cell line from the huge variety of cell lines available. In any case, important characteristics and quality controls need to be verified beforehand. Therefore, this review discusses the renal in vitro models that have been used for the investigation of renal ochratoxin toxicity. In particular, we discuss the choice of the models and the essential parameters making them suitable models for ochratoxin research together with exemplary results from this research. Furthermore, new promising models such as hTERT-immortalised cells and 3D-cultures are briefly discussed.
Collapse
Affiliation(s)
- A.H. Heussner
- Human and Environmental Toxicology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| | - T. Paget
- Pharmacy Health and Well-being, University of Sunderland, Sciences Complex, Wharncliffe Street, Sunderland SR1 3SD, United Kingdom
| |
Collapse
|
11
|
Lin YQ, Wang LR, Pan LL, Wang H, Zhu GQ, Liu WY, Wang JT, Braddock M, Zheng MH. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease. Cytotherapy 2015; 18:186-97. [PMID: 26596504 DOI: 10.1016/j.jcyt.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the shortage of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors associated with experimental protocols that may shed light on the future development of kidney bioengineering and we discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-dimensional and four-dimensional printing in kidney tissue engineering.
Collapse
Affiliation(s)
- Yi-Qian Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Renji School of Wenzhou Medical University, Wenzhou, China
| | - Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang-Liang Pan
- School of Laboratory and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Tao Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Organ In Vitro Culture: What Have We Learned about Early Kidney Development? Stem Cells Int 2015; 2015:959807. [PMID: 26078765 PMCID: PMC4452498 DOI: 10.1155/2015/959807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
When Clifford Grobstein set out to study the inductive interaction between tissues in the developing embryo, he developed a method that remained important for the study of renal development until now. From the late 1950s on, in vitro cultivation of the metanephric kidney became a standard method. It provided an artificial environment that served as an open platform to study organogenesis. This review provides an introduction to the technique of organ culture, describes how the Grobstein assay and its variants have been used to study aspects of mesenchymal induction, and describes the search for natural and chemical inducers of the metanephric mesenchyme. The review also focuses on renal development, starting with ectopic budding of the ureteric bud, ureteric bud branching, and the generation of the nephron and presents the search for stem cells and renal progenitor cells that contribute to specific structures and tissues during renal development. It also presents the current use of Grobstein assay and its modifications in regenerative medicine and tissue engineering today. Together, this review highlights the importance of ex vivo kidney studies as a way to acquire new knowledge, which in the future can and will be implemented for developmental biology and regenerative medicine applications.
Collapse
|
13
|
Putting the glomerulus back together: per aspera ad astra ("a rough road leads to the stars"). Kidney Int 2015; 85:991-8. [PMID: 24786868 DOI: 10.1038/ki.2014.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F, Conti S, Sansavini G, Sisti A, Ravaglia F, Lombardi D, Provenzano A, Manonelles A, Cruzado JM, Giglio S, Roperto RM, Materassi M, Lasagni L, Romagnani P. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders. J Am Soc Nephrol 2015; 26:1961-74. [PMID: 25568173 DOI: 10.1681/asn.2014010057] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022] Open
Abstract
The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders.
Collapse
Affiliation(s)
- Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Elisa Ronconi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Anna Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Francesca Becherucci
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Sara Conti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy; and
| | - Giulia Sansavini
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Alessandro Sisti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Fiammetta Ravaglia
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Duccio Lombardi
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | | | - Anna Manonelles
- Department of Nephrology, Bellvitge's University Hospital, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Bellvitge's University Hospital, Barcelona, Spain
| | - Sabrina Giglio
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Medical Genetics Unit and
| | - Rosa Maria Roperto
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Marco Materassi
- Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE) and Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy; Pediatric Nephrology Unit, Meyer Children's University Hospital, Florence, Italy;
| |
Collapse
|
15
|
van de Hoek G, Nicolaou N, Giles RH, Knoers NVAM, Renkema KY, Bongers EMHF. Functional models for congenital anomalies of the kidney and urinary tract. Nephron Clin Pract 2014; 129:62-7. [PMID: 25531169 DOI: 10.1159/000369313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/24/2014] [Indexed: 11/19/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common developmental diseases in humans; however, the cause for most patients remains unknown. Efforts to identify novel genetic causes for CAKUT through next-generation sequencing techniques have led to the discovery of new genes and risk factors. Concomitantly, these same efforts have generated large gene candidate lists requiring individual functional characterization. Appropriate model systems are needed to assess the functionality of genes and pathogenicity of genetic variants discovered in CAKUT patients. In this review, we discuss how cellular, animal, and personal (human) models are being used to study CAKUT candidate genes and what their major advantages and disadvantages are with respect to relevance and throughput.
Collapse
|
16
|
Zambon JP, Magalhaes RS, Ko I, Ross CL, Orlando G, Peloso A, Atala A, Yoo JJ. Kidney regeneration: Where we are and future perspectives. World J Nephrol 2014; 3:24-30. [PMID: 25332894 PMCID: PMC4202490 DOI: 10.5527/wjn.v3.i3.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
In 2012, about 16487 people received kidney transplants in the United States, whereas 95022 candidates were on the waiting list by the end of the year. Despite advances in renal transplant immunology, approximately 40% of recipients will die or lose graft within 10 years. The limitations of current therapies for renal failure have led researchers to explore the development of modalities that could improve, restore, or replace the renal function. The aim of this paper is to describe a reasonable approach for kidney regeneration and review the current literature regarding cell sources and mechanisms to develop a bioengineering kidney. Due to kidneys peculiar anatomy, extracellular matrix based scaffolds are rational starting point for their regeneration. The perfusion of detergents through the kidney vasculature is an efficient method for delivering decellularizing agents to cells and for removing of cellular material from the tissue. Many efforts have focused on the search of a reliable cell source to provide enrichment for achieving stable renal cell systems. For an efficient bioengineered kidney, these cells must be attached to the organ and then maturated into the bioractors, which simulates the human body environment. A functional bioengineered kidney is still a big challenge for scientists. In the last ten years we have got many improvements on the field of solid organ regeneration; however, we are still far away from the main target. Currently, regenerative centers worldwide have been striving to find feasible strategies to develop bioengineered kidneys. Cell-scaffold technology gives hope to end-stage renal disease patients who struggle with morbidity and mortality due to extended periods on dialysis or immunosupression. The potential of bioengineered organ is to provide a reliable source of organs, which can be refunctionalized and transplanted.
Collapse
|
17
|
Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics? J Control Release 2014; 185:37-44. [DOI: 10.1016/j.jconrel.2014.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
18
|
Report on ISN Forefronts, Florence, Italy, 12-15 September 2013: Stem cells and kidney regeneration. Kidney Int 2014; 86:23-7. [PMID: 24897031 DOI: 10.1038/ki.2014.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/02/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
In recent years it has become clear that most organs and tissues, including kidney, contain resident stem/progenitor cells. Stem cells are undifferentiated, long-lived cells that are unique in their ability to produce differentiated daughter cells and to retain their stem cell identity by self-renewal. A primary goal of this meeting was to review the current understanding of kidney stem cells and mechanisms of kidney regeneration in both lower vertebrates and mammals. Presenters covered a broad range of topics including stem cell quiescence, epigenetics, transcriptional control circuits, dedifferentiation, pluripotent stem cells, renal progenitors, and novel imaging approaches in kidney regeneration. By the end of this highly interactive conference it was clear we are entering into very exciting times for regenerative medicine and the kidney.
Collapse
|
19
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|